IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p1990-d1633581.html
   My bibliography  Save this article

Dynamic Investigation of Thermochemical Heat Upgrade and Alternative Industrial Heating Technologies

Author

Listed:
  • Christos Sammoutos

    (Department of Thermal Engineering, National Technical University of Athens, 15772 Athens, Greece)

  • Angeliki Kitsopoulou

    (Department of Thermal Engineering, National Technical University of Athens, 15772 Athens, Greece)

  • Panagiotis Lykas

    (Department of Thermal Engineering, National Technical University of Athens, 15772 Athens, Greece)

  • Dimitra Gonidaki

    (Department of Mechanical Engineering, School of Engineering, University of West Attica, 250 Thivon & Petrou Ralli, 12244 Athens, Greece)

  • Evangelos Vidalis

    (Department of Thermal Engineering, National Technical University of Athens, 15772 Athens, Greece)

  • Dimitrios Korres

    (Department of Thermal Engineering, National Technical University of Athens, 15772 Athens, Greece)

  • Hamid Reza Rahbari

    (Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark)

  • Christos Tzivanidis

    (Department of Thermal Engineering, National Technical University of Athens, 15772 Athens, Greece)

  • Evangelos Bellos

    (Department of Mechanical Engineering, School of Engineering, University of West Attica, 250 Thivon & Petrou Ralli, 12244 Athens, Greece)

Abstract

Industrial process heat production is critical to achieving sustainability in our society. Avoiding fossil fuels and reducing electricity consumption for heat production are critical aspects of creating sustainable industries. Exploiting waste heat streams by upgrading them into useful high-temperature heat is an interesting idea for reducing the CO 2 footprint industrial processes. In line with this, the present study’s main objective is to investigate a novel thermochemical heat upgrade system based on the SrBr 2 /H 2 O working pair for the petrochemical industry, which is practically driven only by low-temperature waste heat streams. This innovative system, which exploits a waste heat stream of 200 °C and upgrades it to 250 °C to make it suitable for industry utilization, achieves a nominal coefficient of performance of 0.605. The examined system is compared with three other alternatives, including a natural gas boiler with 86% efficiency, a hybrid solar thermal unit with an auxiliary natural gas boiler, and a high-temperature heat pump with a coefficient of performance of two. The nominal industrial heat production is 2.2 MW for the thermochemical heat upgrade system. The dynamic investigation is conducted under the climate conditions of Denmark and Greece. The high-temperature heat pump’s annual electricity consumption is 6.94 GWh. In contrast, the annual heat consumed by the natural gas boiler is 16.12 GWh, without integrating the solar thermal unit. For the hybrid system, the maximum daily contribution of the solar thermal system is 87% for the climate conditions of Denmark, and the annual useful heat generated by the concentrating solar system is 1.30 GWh for the Danish climate conditions and 2.82 GWh for the Greek climate conditions.

Suggested Citation

  • Christos Sammoutos & Angeliki Kitsopoulou & Panagiotis Lykas & Dimitra Gonidaki & Evangelos Vidalis & Dimitrios Korres & Hamid Reza Rahbari & Christos Tzivanidis & Evangelos Bellos, 2025. "Dynamic Investigation of Thermochemical Heat Upgrade and Alternative Industrial Heating Technologies," Energies, MDPI, vol. 18(8), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1990-:d:1633581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/1990/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/1990/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Jian & Li, Yan & Gu, Chun-wei & Zhang, Li, 2014. "Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry," Energy, Elsevier, vol. 71(C), pages 673-680.
    2. Georgios I. Tsoumalis & Zafeirios N. Bampos & Georgios V. Chatzis & Pandelis N. Biskas, 2022. "Overview of Natural Gas Boiler Optimization Technologies and Potential Applications on Gas Load Balancing Services," Energies, MDPI, vol. 15(22), pages 1-24, November.
    3. Sonja Sechi & Sara Giarola & Pierluigi Leone, 2022. "Taxonomy for Industrial Cluster Decarbonization: An Analysis for the Italian Hard-to-Abate Industry," Energies, MDPI, vol. 15(22), pages 1-31, November.
    4. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    5. Anna Sandhaas & Hanhee Kim & Niklas Hartmann, 2022. "Methodology for Generating Synthetic Load Profiles for Different Industry Types," Energies, MDPI, vol. 15(10), pages 1-29, May.
    6. Barma, M.C. & Saidur, R. & Rahman, S.M.A. & Allouhi, A. & Akash, B.A. & Sait, Sadiq M., 2017. "A review on boilers energy use, energy savings, and emissions reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 970-983.
    7. Stengler, Jana & Bürger, Inga & Linder, Marc, 2020. "Thermodynamic and kinetic investigations of the SrBr2 hydration and dehydration reactions for thermochemical energy storage and heat transformation," Applied Energy, Elsevier, vol. 277(C).
    8. Stengler, Jana & Linder, Marc, 2020. "Thermal energy storage combined with a temperature boost: An underestimated feature of thermochemical systems," Applied Energy, Elsevier, vol. 262(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    2. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
    3. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Luo, Xinyi & Li, Wei & Zhang, Lianjie & Zeng, Min & Klemeš, Jirí Jaromír & Wang, Qiuwang, 2023. "Effects evaluation of Fin layouts and configurations on discharging performance of double-pipe thermochemical energy storage reactor," Energy, Elsevier, vol. 282(C).
    5. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    6. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    7. Yang, Jing & Zhang, Zhiyong & Yang, Mingwan & Chen, Jiayu, 2019. "Optimal operation strategy of green supply chain based on waste heat recovery quality," Energy, Elsevier, vol. 183(C), pages 599-605.
    8. Yang, Jing & Zhang, Zhiyong & Hong, Ming & Yang, Mingwan & Chen, Jiayu, 2020. "An oligarchy game model for the mobile waste heat recovery energy supply chain," Energy, Elsevier, vol. 210(C).
    9. Jun Yang & Biao Li & Hui Sun & Jianxin Xu & Hua Wang, 2023. "Experimental Measurement and Theoretical Prediction of Bubble Growth and Convection Heat Transfer Coefficient in Direct Contact Heat Transfer," Energies, MDPI, vol. 16(3), pages 1-19, January.
    10. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    11. Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
    12. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    13. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    14. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    15. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    16. Maria Alessandra Ancona & Michele Bianchi & Lisa Branchini & Andrea De Pascale & Francesco Melino & Antonio Peretto & Noemi Torricelli, 2021. "Systematic Comparison of ORC and s-CO 2 Combined Heat and Power Plants for Energy Harvesting in Industrial Gas Turbines," Energies, MDPI, vol. 14(12), pages 1-22, June.
    17. Pedro Faria & Zita Vale, 2022. "Realistic Load Modeling for Efficient Consumption Management Using Real-Time Simulation and Power Hardware-in-the-Loop," Energies, MDPI, vol. 16(1), pages 1-15, December.
    18. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    19. Silva, Walquiria N. & Bandória, Luís H.T. & Dias, Bruno H. & de Almeida, Madson C. & de Oliveira, Leonardo W., 2023. "Generating realistic load profiles in smart grids: An approach based on nonlinear independent component estimation (NICE) and convolutional layers," Applied Energy, Elsevier, vol. 351(C).
    20. Zeng, Yi & Clark, Ruby-Jean & Galazutdinova, Yana & Odukomaiya, Adewale & Al-Hallaj, Said & Farid, Mohammed & Kaur, Sumanjeet & Woods, Jason, 2024. "Open-cycle thermochemical energy storage for building space heating: Practical system configurations and effective energy density," Applied Energy, Elsevier, vol. 376(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1990-:d:1633581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.