IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6586-d655064.html
   My bibliography  Save this article

Updatable Probabilistic Evaluation of Failure Rates of Mechanical Components in Power Take-Off Systems of Tidal Stream Turbines

Author

Listed:
  • Dimitri V. Val

    (Institute for Infrastructure & Environment, Heriot-Watt University, Edinburgh EH14 4AS, UK)

  • Leon Chernin

    (School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK)

  • Daniil Yurchenko

    (Institute of Mechanical, Process & Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK)

Abstract

This paper presents a method for the probabilistic evaluation of the failure rates of mechanical components in a typical power take-off (PTO) system of a horizontal-axis tidal stream turbine (HATT). The method is based on a modification of the method of the influence factors, when base failure rates, relevant influence factors and, subsequently, resulting failure rates are treated as random variables. The prior (i.e., initial) probabilistic distribution of the failure rates of a HATT component is generated using data for similar components from other industries, while taking into account actual characteristics of the component and site-specific operating and environmental conditions of the HATT. A posterior distribution of the failure rate is estimated numerically based on a Bayesian approach as new information about the component performance in an operating HATT becomes available. The posterior distribution is then employed to obtain the updated mean and lower and upper confidence limits of the failure rate. The proposed method is illustrated by applying it to the evaluation of the failure rates of two key components of the PTO system of a typical HATT—main seal and main bearing. In particular, it is shown that uncertainty associated with the method itself has a major influence on the failure rate evaluation. The proposed method is useful for the reliability assessment of both PTO designs of new HATTs and PTO systems of operating HATTs.

Suggested Citation

  • Dimitri V. Val & Leon Chernin & Daniil Yurchenko, 2021. "Updatable Probabilistic Evaluation of Failure Rates of Mechanical Components in Power Take-Off Systems of Tidal Stream Turbines," Energies, MDPI, vol. 14(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6586-:d:655064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ewing, Fraser J. & Thies, Philipp R. & Shek, Jonathan & Ferreira, Claudio Bittencourt, 2020. "Probabilistic failure rate model of a tidal turbine pitch system," Renewable Energy, Elsevier, vol. 160(C), pages 987-997.
    2. Bucher, R. & Jeffrey, H. & Bryden, I.G. & Harrison, G.P., 2016. "Creation of investor confidence: The top-level drivers for reaching maturity in marine energy," Renewable Energy, Elsevier, vol. 88(C), pages 120-129.
    3. Ali Mosleh & George Apostolakis, 1986. "The Assessment of Probability Distributions from Expert Opinions with an Application to Seismic Fragility Curves," Risk Analysis, John Wiley & Sons, vol. 6(4), pages 447-461, December.
    4. Thies, Philipp R. & Smith, George H. & Johanning, Lars, 2012. "Addressing failure rate uncertainties of marine energy converters," Renewable Energy, Elsevier, vol. 44(C), pages 359-367.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitri V. Val, 2023. "Reliability of Marine Energy Converters," Energies, MDPI, vol. 16(8), pages 1-4, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitri V. Val, 2023. "Reliability of Marine Energy Converters," Energies, MDPI, vol. 16(8), pages 1-4, April.
    2. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    3. Simon Ambühl & Laurent Marquis & Jens Peter Kofoed & John Dalsgaard Sørensen, 2015. "Operation and maintenance strategies for wave energy converters," Journal of Risk and Reliability, , vol. 229(5), pages 417-441, October.
    4. Ewing, Fraser J. & Thies, Philipp R. & Shek, Jonathan & Ferreira, Claudio Bittencourt, 2020. "Probabilistic failure rate model of a tidal turbine pitch system," Renewable Energy, Elsevier, vol. 160(C), pages 987-997.
    5. James K. Hammitt & Alexander I. Shlyakhter, 1999. "The Expected Value of Information and the Probability of Surprise," Risk Analysis, John Wiley & Sons, vol. 19(1), pages 135-152, February.
    6. Abhinav B. Agrawal & Kash Barker & Yacov Y. Haimes, 2011. "Adaptive multiplayer approach for risk‐based decision‐making: 2006 Virginia Gubernatorial Inauguration," Systems Engineering, John Wiley & Sons, vol. 14(4), pages 455-470, December.
    7. Neil A. Stiber & Mitchell J. Small & Marina Pantazidou, 2004. "Site‐Specific Updating and Aggregation of Bayesian Belief Network Models for Multiple Experts," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1529-1538, December.
    8. Roger M. Cooke & Rudi Waij, 1986. "Monte Carlo Sampling for Generalized Knowledge Dependence with Application to Human Reliability," Risk Analysis, John Wiley & Sons, vol. 6(3), pages 335-343, September.
    9. Astariz, S. & Iglesias, G., 2016. "Co-located wind and wave energy farms: Uniformly distributed arrays," Energy, Elsevier, vol. 113(C), pages 497-508.
    10. Famoso, Fabio & Brusca, Sebastian & D'Urso, Diego & Galvagno, Antonio & Chiacchio, Ferdinando, 2020. "A novel hybrid model for the estimation of energy conversion in a wind farm combining wake effects and stochastic dependability," Applied Energy, Elsevier, vol. 280(C).
    11. Elaheh Rabiei & Lixian Huang & Hao-Yu Chien & Arjun Earthperson & Mihai A Diaconeasa & Jason Woo & Subramanian Iyer & Mark White & Ali Mosleh, 2021. "Method and software platform for electronic COTS parts reliability estimation in space applications," Journal of Risk and Reliability, , vol. 235(5), pages 744-760, October.
    12. Vissio, Giacomo & Valério, Duarte & Bracco, Giovanni & Beirão, Pedro & Pozzi, Nicola & Mattiazzo, Giuliana, 2017. "ISWEC linear quadratic regulator oscillating control," Renewable Energy, Elsevier, vol. 103(C), pages 372-382.
    13. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    14. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Yuan-Shang Chang & Ali Mosleh, 2019. "Reliability of cable insulation under reaction- and diffusion-controlled thermal degradation," Journal of Risk and Reliability, , vol. 233(4), pages 639-647, August.
    16. Guo, Wen & Yang, Bo & Ji, Jiong & Liu, Xiaorui, 2023. "Green finance development drives renewable energy development: Mechanism analysis and empirical research," Renewable Energy, Elsevier, vol. 215(C).
    17. Sakurahara, Tatsuya & Schumock, Grant & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Simulation-Informed Probabilistic Methodology for Common Cause Failure Analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 84-99.
    18. Yuan-Shang Chang & Ali Mosleh, 2019. "Probabilistic model of degradation of cable insulations in nuclear power plants," Journal of Risk and Reliability, , vol. 233(5), pages 803-814, October.
    19. Justin W. Eggstaff & Thomas A. Mazzuchi & Shahram Sarkani, 2014. "The Development of Progress Plans Using a Performance‐Based Expert Judgment Model to Assess Technical Performance and Risk," Systems Engineering, John Wiley & Sons, vol. 17(4), pages 375-391, December.
    20. Tenis Ranjan Munaweera Thanthirige & Jamie Goggins & Michael Flanagan & William Finnegan, 2023. "A State-of-the-Art Review of Structural Testing of Tidal Turbine Blades," Energies, MDPI, vol. 16(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6586-:d:655064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.