IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i1p211-d474125.html
   My bibliography  Save this article

Planform Geometry and Excitation Effects of PVDF-Based Vibration Energy Harvesters

Author

Listed:
  • Jie Wang

    (Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M1 3BB, UK)

  • Mostafa R. A. Nabawy

    (Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M1 3BB, UK
    Aerospace Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt)

  • Andrea Cioncolini

    (Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M1 3BB, UK)

  • Alistair Revell

    (Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M1 3BB, UK)

  • Samuel Weigert

    (Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M1 3BB, UK)

Abstract

In the present paper, we report a systematic investigation of planform geometry and excitation level effects on the dynamics and power generation characteristics of polyvinylidene difluoride (PVDF)-based cantilevered vibration energy harvesters. Piezoelectric vibration energy harvesters provide a promising energy harvesting solution for widespread use of wireless sensors in remote locations. Highly flexible PVDF polymers offer resonant frequencies at suitable range for harvesting mechanical energy within low-frequency applications, though information on the efficient sizing of these devices is currently limited. We test the response of a set of eight harvesters to typical vibration sources excitation levels in the range 0.2–0.6 g. This set comprises four widths and two lengths, incrementing each time by a factor of two. The selected range of dimensions is sufficient to identify optimal power output versus width for both lengths tested. This optimal width value depends on excitation amplitude in such a way that narrower harvesters are more suited for small excitations, whereas wider harvesters perform better upon experiencing large excitations. Non-linear effects present in longer harvesters are demonstrated to significantly reduce performance, which motivates the selection of planform dimensions inside the linear range. Finally, we explore the correlation of performance with various geometric quantities in order to inform future design studies and highlight the value of using the second moment of planform area to measure harvester efficiency in terms of power density. This points towards the use of harvesters with non-rectangular planform area for optimal performance.

Suggested Citation

  • Jie Wang & Mostafa R. A. Nabawy & Andrea Cioncolini & Alistair Revell & Samuel Weigert, 2021. "Planform Geometry and Excitation Effects of PVDF-Based Vibration Energy Harvesters," Energies, MDPI, vol. 14(1), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:211-:d:474125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/211/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/211/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silva-Leon, Jorge & Cioncolini, Andrea & Nabawy, Mostafa R.A. & Revell, Alistair & Kennaugh, Andrew, 2019. "Simultaneous wind and solar energy harvesting with inverted flags," Applied Energy, Elsevier, vol. 239(C), pages 846-858.
    2. Orrego, Santiago & Shoele, Kourosh & Ruas, Andre & Doran, Kyle & Caggiano, Brett & Mittal, Rajat & Kang, Sung Hoon, 2017. "Harvesting ambient wind energy with an inverted piezoelectric flag," Applied Energy, Elsevier, vol. 194(C), pages 212-222.
    3. Wei, Chongfeng & Jing, Xingjian, 2017. "A comprehensive review on vibration energy harvesting: Modelling and realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1-18.
    4. Jie Wang & Mostafa R. A. Nabawy & Andrea Cioncolini & Alistair Revell, 2019. "Solar Panels as Tip Masses in Low Frequency Vibration Harvesters," Energies, MDPI, vol. 12(20), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang Lu & Quan Wen & Xianming He & Zhiyu Wen, 2019. "A Nonlinear Broadband Electromagnetic Vibration Energy Harvester Based on Double-Clamped Beam," Energies, MDPI, vol. 12(14), pages 1-12, July.
    2. Jie Wang & Mostafa R. A. Nabawy & Andrea Cioncolini & Alistair Revell, 2019. "Solar Panels as Tip Masses in Low Frequency Vibration Harvesters," Energies, MDPI, vol. 12(20), pages 1-20, October.
    3. Silva-Leon, Jorge & Cioncolini, Andrea & Nabawy, Mostafa R.A. & Revell, Alistair & Kennaugh, Andrew, 2019. "Simultaneous wind and solar energy harvesting with inverted flags," Applied Energy, Elsevier, vol. 239(C), pages 846-858.
    4. Mujtaba, A. & Latif, U. & Uddin, E. & Younis, M.Y. & Sajid, M. & Ali, Z. & Abdelkefi, A., 2021. "Hydrodynamic energy harvesting analysis of two piezoelectric tandem flags under influence of upstream body’s wakes," Applied Energy, Elsevier, vol. 282(PA).
    5. Latif, U. & Uddin, E. & Younis, M.Y. & Aslam, J. & Ali, Z. & Sajid, M. & Abdelkefi, A., 2021. "Experimental electro-hydrodynamic investigation of flag-based energy harvesting in the wake of inverted C-shape cylinder," Energy, Elsevier, vol. 215(PB).
    6. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).
    7. Salazar, R. & Abdelkefi, A., 2020. "Nonlinear analysis of a piezoelectric energy harvester in body undulatory caudal fin aquatic unmanned vehicles," Applied Energy, Elsevier, vol. 263(C).
    8. Muhammad Abdullah Sheeraz & Muhammad Sohail Malik & Khalid Rehman & Hassan Elahi & Zubair Butt & Iftikhar Ahmad & Marco Eugeni & Paolo Gaudenzi, 2021. "Numerical Assessment and Parametric Optimization of a Piezoelectric Wind Energy Harvester for IoT-Based Applications," Energies, MDPI, vol. 14(9), pages 1-19, April.
    9. Ebrahimian, Fariba & Kabirian, Zohre & Younesian, Davood & Eghbali, Pezhman, 2021. "Auxetic clamped-clamped resonators for high-efficiency vibration energy harvesting at low-frequency excitation," Applied Energy, Elsevier, vol. 295(C).
    10. Kim, Ki Jong & Kim, Junyoung & Kim, Daegyoum, 2023. "Slosh-induced piezoelectric energy harvesting in a liquid tank," Renewable Energy, Elsevier, vol. 206(C), pages 409-417.
    11. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    12. Huguet, Thomas & Badel, Adrien & Druet, Olivier & Lallart, Mickaël, 2018. "Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness," Applied Energy, Elsevier, vol. 226(C), pages 607-617.
    13. He, Lipeng & Liu, Lei & Zhou, Jianwen & Yu, Gang & Sun, Baoyu & Cheng, Guangming, 2022. "Design and analysis of a double-acting nonlinear wideband piezoelectric energy harvester under plucking and collision," Energy, Elsevier, vol. 239(PD).
    14. Josué Esaú Vega-Ávila & Guillermo Adolfo Anaya-Ruiz & José Joel Román-Godínez & Gabriela Guadalupe Esquivel-Barajas & Jorge Ortiz-Marín & Rogelio Gudiño-Valdez & Hilda Aguilar-Rodríguez, 2025. "Piezoelectric Energy Harvesting System to Charge Batteries with the Use of a Portable Musical Organ," Energies, MDPI, vol. 18(7), pages 1-18, April.
    15. Latif, Usman & Younis, M. Yamin & Idrees, Saad & Uddin, Emad & Abdelkefi, Abdessattar & Munir, Adnan & Zhao, Ming, 2023. "Synergistic analysis of wake effect of two cylinders on energy harvesting characteristics of piezoelectric flag," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
    17. Yu, Gang & He, Lipeng & Wang, Hongxin & Sun, Lei & Zhang, Zhonghua & Cheng, Guangming, 2023. "Research of rotating piezoelectric energy harvester for automotive motion," Renewable Energy, Elsevier, vol. 211(C), pages 484-493.
    18. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.
    19. David Omooria Masara & Hassan El Gamal & Ossama Mokhiamar, 2021. "Split Cantilever Multi-Resonant Piezoelectric Energy Harvester for Low-Frequency Application," Energies, MDPI, vol. 14(16), pages 1-15, August.
    20. Cho, Jae Yong & Kim, Kyung-Bum & Hwang, Won Seop & Yang, Chan Ho & Ahn, Jung Hwan & Hong, Seong Do & Jeon, Deok Hwan & Song, Gyeong Ju & Ryu, Chul Hee & Woo, Sang Bum & Kim, Jihoon & Lee, Tae Hee & Ch, 2019. "A multifunctional road-compatible piezoelectric energy harvester for autonomous driver-assist LED indicators with a self-monitoring system," Applied Energy, Elsevier, vol. 242(C), pages 294-301.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:211-:d:474125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.