IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5023-d615352.html
   My bibliography  Save this article

Parametric Sensitivity Analysis of Rotor Angle Stability Indicators

Author

Listed:
  • Ashish Shrestha

    (Department of Electrical Engineering, Information Technology and Cybernetics, University of South-Eastern Norway, N-3918 Porsgrunn, Norway)

  • Francisco Gonzalez-Longatt

    (Department of Electrical Engineering, Information Technology and Cybernetics, University of South-Eastern Norway, N-3918 Porsgrunn, Norway)

Abstract

With the increasing penetration rate of Power Electronic Converter (PEC) based technologies, the electrical power systems are facing the problem of transient stability since the PEC based technologies do not contribute to the system inertia, and the proportion of synchronous generators (i.e., the source of inertia) is in decreasing rate. In addition, PEC based technologies’ components have poor inherent damping. It is very important to analyze the system characteristics of a power system to minimize the potential instabilities during the contingencies. This paper presents the parametric sensitivity analysis of the rotor angle stability indicators for the 39-bus New England power system. The indicators of rotor angle stability analysis such as critical fault clearing time (CCT), Eigenvalue points, damping ratio, frequency deviation, voltage deviation, and generator’s speed deviation are identified and analyzed for three case scenarios; each scenario has six sub-cases with different inertia constants. The results show that the CCTs for each component will be reduced if the inertia reduces at any section of a multi-machine power system. Although the applied three scenarios with six sub-cases are identified to be stable in this analysis, the decreasing inertia constant has significant impact on the power system dynamics.

Suggested Citation

  • Ashish Shrestha & Francisco Gonzalez-Longatt, 2021. "Parametric Sensitivity Analysis of Rotor Angle Stability Indicators," Energies, MDPI, vol. 14(16), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5023-:d:615352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ashish Shrestha & Bishal Ghimire & Francisco Gonzalez-Longatt, 2021. "A Bayesian Model to Forecast the Time Series Kinetic Energy Data for a Power System," Energies, MDPI, vol. 14(11), pages 1-15, June.
    2. Ashish Shrestha & Francisco Gonzalez-Longatt, 2021. "Frequency Stability Issues and Research Opportunities in Converter Dominated Power System," Energies, MDPI, vol. 14(14), pages 1-28, July.
    3. Thongchart Kerdphol & Fathin Saifur Rahman & Yasunori Mitani, 2018. "Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 11(4), pages 1-16, April.
    4. Arcadio Perilla & Stelios Papadakis & Jose Luis Rueda Torres & Mart van der Meijden & Peter Palensky & Francisco Gonzalez-Longatt, 2020. "Transient Stability Performance of Power Systems with High Share of Wind Generators Equipped with Power-Angle Modulation Controllers or Fast Local Voltage Controllers," Energies, MDPI, vol. 13(16), pages 1-17, August.
    5. Wang, Yunqi & Ravishankar, Jayashri & Phung, Toan, 2016. "A study on critical clearing time (CCT) of micro-grids under fault conditions," Renewable Energy, Elsevier, vol. 95(C), pages 381-395.
    6. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanus Bikram Malla & Abhinav Bhattarai & Amrit Parajuli & Ashish Shrestha & Bhupendra Bimal Chhetri & Kamal Chapagain, 2022. "Status, Challenges and Future Directions of Blockchain Technology in Power System: A State of Art Review," Energies, MDPI, vol. 15(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    2. Fauzan Hanif Jufri & Jaesung Jung & Budi Sudiarto & Iwa Garniwa, 2023. "Development of Virtual Inertia Control with State-of-Charge Recovery Strategy Using Coordinated Secondary Frequency Control for Optimized Battery Capacity in Isolated Low Inertia Grid," Energies, MDPI, vol. 16(14), pages 1-22, July.
    3. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    4. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    5. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Abhimanyu Kaushal & Dirk Van Hertem, 2019. "An Overview of Ancillary Services and HVDC Systems in European Context," Energies, MDPI, vol. 12(18), pages 1-20, September.
    8. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
    9. Florian Errigo & Leandro De Oliveira Porto & Florent Morel, 2022. "Design Methodology Based on Prebuilt Components for Modular Multilevel Converters with Partial Integration of Energy Storage Systems," Energies, MDPI, vol. 15(14), pages 1-18, July.
    10. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    11. Yingying Jiang & Xiaolin Chen & Sui Peng & Xiao Du & Dan Xu & Junjie Tang & Wenyuan Li, 2019. "Study on Emergency Load Shedding of Hybrid AC/DC Receiving-End Power Grid with Stochastic, Static Characteristics-Dependent Load Model," Energies, MDPI, vol. 12(20), pages 1-20, October.
    12. Tingting Cai & Sutong Liu & Gangui Yan & Hongbo Liu, 2019. "Analysis of Doubly Fed Induction Generators Participating in Continuous Frequency Regulation with Different Wind Speeds Considering Regulation Power Constraints," Energies, MDPI, vol. 12(4), pages 1-20, February.
    13. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    14. Rouzbehi, Kumars & Candela, J. Ignacio & Gharehpetian, Gevork B. & Harnefors, Lennart & Luna, Alvaro & Rodriguez, Pedro, 2017. "Multiterminal DC grids: Operating analogies to AC power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 886-895.
    15. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    16. Gustavo Adolfo Gómez-Ramírez & Carlos Meza & Gonzalo Mora-Jiménez & José Rodrigo Rojas Morales & Luis García-Santander, 2023. "The Central American Power System: Achievements, Challenges, and Opportunities for a Green Transition," Energies, MDPI, vol. 16(11), pages 1-20, May.
    17. Matheus Schramm Dall’Asta & Telles Brunelli Lazzarin, 2023. "Small-Signal Modeling and Stability Analysis of a Grid-Following Inverter with Inertia Emulation," Energies, MDPI, vol. 16(16), pages 1-28, August.
    18. Martínez – Lucas, Guillermo & Sarasua, José Ignacio & Fernández – Guillamón, Ana & Molina – García, Ángel, 2021. "Combined hydro-wind frequency control scheme: Modal analysis and isolated power system case example," Renewable Energy, Elsevier, vol. 180(C), pages 1056-1072.
    19. Yifei Wang & Youxin Yuan, 2019. "Inertia Provision and Small Signal Stability Analysis of a Wind-Power Generation System Using Phase-Locked Synchronized Equation," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    20. Julian Struwe & Holger Wrede & Hendrik Vennegeerts, 2023. "Validation Aspects for Grid-Forming Converters Based on System Characteristics and Inertia Impact," Energies, MDPI, vol. 16(21), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5023-:d:615352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.