IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4876-d611523.html
   My bibliography  Save this article

A New Zealand Perspective on Hydrogen as an Export Commodity: Timing of Market Development and an Energy Assessment of Hydrogen Carriers

Author

Listed:
  • James T. Hinkley

    (Sustainable Energy Systems, School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6140, New Zealand)

Abstract

Hydrogen is currently receiving significant attention and investment as a key enabler of defossilised global energy systems. Many believe this will eventually result in the international trade of hydrogen as a commodity from countries with significant renewable energy resources, for example New Zealand and Australia, to net energy importing countries including Japan and Korea. Japan has, since 2014, been actively exploring the components of the necessary supply chains, including the assessment of different hydrogen carriers. Public/private partnerships have invested in demonstration projects to assess the comparative merits of liquid hydrogen, ammonia, and organic carriers. On the supply side, significant projects have been proposed in Australia while the impending closure of New Zealand’s Tiwai Point aluminium smelter at the end of 2024 may provide an opportunity for green hydrogen production. However, it is also evident that the transition to a hydrogen economy will take some years and confidence around the timing of supply and demand capacity is essential for new energy infrastructure investment. This paper reviews the expected development of an export market to Japan and concludes that large scale imports are unlikely before the late 2020s. Comparative evaluation of the energy efficiency of various hydrogen carriers concludes that it is too early to call a winner, but that ammonia has key advantages as a fungible commodity today, while liquid hydrogen has the potential to be a more efficient energy carrier. Ultimately it will be the delivered cost of hydrogen that will determine which carriers are used, and while energy efficiency is a key metric, there are other considerations such as infrastructure availability, and capital and operating costs.

Suggested Citation

  • James T. Hinkley, 2021. "A New Zealand Perspective on Hydrogen as an Export Commodity: Timing of Market Development and an Energy Assessment of Hydrogen Carriers," Energies, MDPI, vol. 14(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4876-:d:611523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Le, Si & Lee, Jui-Yuan & Chen, Cheng-Liang, 2018. "Waste cold energy recovery from liquefied natural gas (LNG) regasification including pressure and thermal energy," Energy, Elsevier, vol. 152(C), pages 770-787.
    2. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    3. Obara, Shin'ya, 2019. "Energy and exergy flows of a hydrogen supply chain with truck transportation of ammonia or methyl cyclohexane," Energy, Elsevier, vol. 174(C), pages 848-860.
    4. Rouwenhorst, Kevin H.R. & Van der Ham, Aloijsius G.J. & Mul, Guido & Kersten, Sascha R.A., 2019. "Islanded ammonia power systems: Technology review & conceptual process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enric Prats-Salvado & Nathalie Monnerie & Christian Sattler, 2022. "Techno-Economic Assessment of the Integration of Direct Air Capture and the Production of Solar Fuels," Energies, MDPI, vol. 15(14), pages 1-14, July.
    2. Lei Ma & Mei Song, 2022. "Approaches to Carbon Emission Reductions and Technology in China’s Chemical Industry to Achieve Carbon Neutralization," Energies, MDPI, vol. 15(15), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Reuß & Paris Dimos & Aline Léon & Thomas Grube & Martin Robinius & Detlef Stolten, 2021. "Hydrogen Road Transport Analysis in the Energy System: A Case Study for Germany through 2050," Energies, MDPI, vol. 14(11), pages 1-17, May.
    2. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    3. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Jiwon Yu & Young Jae Han & Hyewon Yang & Sugil Lee & Gildong Kim & Chulung Lee, 2022. "Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    5. Abdulrahman Joubi & Yutaro Akimoto & Keiichi Okajima, 2022. "A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates," Energies, MDPI, vol. 15(11), pages 1-14, May.
    6. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    7. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    8. Jing Sun & Yonggang Peng & Di Lu & Xiaofeng Chen & Weifeng Xu & Liguo Weng & Jun Wu, 2022. "Optimized Configuration and Operating Plan for Hydrogen Refueling Station with On-Site Electrolytic Production," Energies, MDPI, vol. 15(7), pages 1-20, March.
    9. Frank, Matthias & Deja, Robert & Peters, Roland & Blum, Ludger & Stolten, Detlef, 2018. "Bypassing renewable variability with a reversible solid oxide cell plant," Applied Energy, Elsevier, vol. 217(C), pages 101-112.
    10. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    11. Niermann, M. & Timmerberg, S. & Drünert, S. & Kaltschmitt, M., 2021. "Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    14. Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.
    15. Simon Kaiser & Felix Siems & Clemens Mostert & Stefan Bringezu, 2022. "Environmental and Economic Performance of CO 2 -Based Methanol Production Using Long-Distance Transport for H 2 in Combination with CO 2 Point Sources: A Case Study for Germany," Energies, MDPI, vol. 15(7), pages 1-22, March.
    16. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    17. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Coronas, Alberto, 2019. "Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 183(C), pages 448-461.
    18. Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    20. Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4876-:d:611523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.