IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v276y2020ics0306261920309983.html
   My bibliography  Save this article

Optimising fuel supply chains within planetary boundaries: A case study of hydrogen for road transport in the UK

Author

Listed:
  • Ehrenstein, Michael
  • Galán-Martín, Ángel
  • Tulus, Victor
  • Guillén-Gosálbez, Gonzalo

Abstract

The world-wide sustainability implications of transport technologies remain unclear because their assessment often relies on metrics that are hard to interpret from a global perspective. To contribute to filling this gap, here we apply the concept of planetary boundaries (PBs), i.e., a set of biophysical limits critical for operating the planet safely, to address the optimal design of sustainable fuel supply chains (SCs) focusing on hydrogen for vehicle use. By incorporating PBs into a mixed-integer linear programming model (MILP), we identify SC configurations that satisfy a given transport demand while minimising the PBs transgression level, i.e., while reducing the risk of surpassing the ecological capacity of the Earth. On applying this methodology to the UK, we find that the current fossil-based sector is unsustainable as it transgresses the energy imbalance, CO2 concentration, and ocean acidification PBs heavily, i.e., five to 55-fold depending on the downscale principle. The move to hydrogen would help to reduce current transgression levels substantially, i.e., reductions of 9–86% depending on the case. However, it would be insufficient to operate entirely within all the PBs concurrently. The minimum impact SCs would produce hydrogen via water electrolysis powered by wind and nuclear energy and store it in compressed form followed by distribution via rail, which would require as much as 37TWh of electricity per year. Our work unfolds new avenues for the incorporation of PBs in the assessment and optimisation of energy systems to arrive at sustainable solutions that are entirely consistent with the carrying capacity of the planet.

Suggested Citation

  • Ehrenstein, Michael & Galán-Martín, Ángel & Tulus, Victor & Guillén-Gosálbez, Gonzalo, 2020. "Optimising fuel supply chains within planetary boundaries: A case study of hydrogen for road transport in the UK," Applied Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309983
    DOI: 10.1016/j.apenergy.2020.115486
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920309983
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    2. Won, Wangyun & Kwon, Hweeung & Han, Jee-Hoon & Kim, Jiyong, 2017. "Design and operation of renewable energy sources based hydrogen supply system: Technology integration and optimization," Renewable Energy, Elsevier, vol. 103(C), pages 226-238.
    3. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    4. Finn Roar Aune & Rolf Golombek & Hilde Hallre, 2015. "Phasing out Nuclear Power in Europe," CESifo Working Paper Series 5403, CESifo.
    5. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    6. Daniel W. O’Neill & Andrew L. Fanning & William F. Lamb & Julia K. Steinberger, 2018. "A good life for all within planetary boundaries," Nature Sustainability, Nature, vol. 1(2), pages 88-95, February.
    7. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    8. Yu, H. & Reiner, D. & Chen, H. & Mi, Z., 2018. "A comparison of public preferences for different low-carbon energy technologies: Support for CCS, nuclear and wind energy in the United Kingdom," Cambridge Working Papers in Economics 1826, Faculty of Economics, University of Cambridge.
    9. Bareiß, Kay & de la Rua, Cristina & Möckl, Maximilian & Hamacher, Thomas, 2019. "Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems," Applied Energy, Elsevier, vol. 237(C), pages 862-872.
    10. Jaesun Wang & Seoyong Kim, 2018. "Comparative Analysis of Public Attitudes toward Nuclear Power Energy across 27 European Countries by Applying the Multilevel Model," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yunna & Liu, Fangtong & Wu, Junhao & He, Jiaming & Xu, Minjia & Zhou, Jianli, 2022. "Barrier identification and analysis framework to the development of offshore wind-to-hydrogen projects," Energy, Elsevier, vol. 239(PB).
    2. Wickham, David & Hawkes, Adam & Jalil-Vega, Francisca, 2022. "Hydrogen supply chain optimisation for the transport sector – Focus on hydrogen purity and purification requirements," Applied Energy, Elsevier, vol. 305(C).
    3. Vipulesh Shardeo & Bishal Dey Sarkar, 2024. "Adoption of hydrogen‐fueled freight transportation: A strategy toward sustainability," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 223-240, February.
    4. Xuemei Bai & Syezlin Hasan & Lauren Seaby Andersen & Anders Bjørn & Şiir Kilkiş & Daniel Ospina & Jianguo Liu & Sarah E. Cornell & Oscar Sabag Muñoz & Ariane Bremond & Beatrice Crona & Fabrice DeClerc, 2024. "Translating Earth system boundaries for cities and businesses," Nature Sustainability, Nature, vol. 7(2), pages 108-119, February.
    5. De-León Almaraz, Sofía & Rácz, Viktor & Azzaro-Pantel, Catherine & Szántó, Zoltán Oszkár, 2022. "Multiobjective and social cost-benefit optimisation for a sustainable hydrogen supply chain: Application to Hungary," Applied Energy, Elsevier, vol. 325(C).
    6. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    7. Sánchez, Antonio & Martín, Mariano & Zhang, Qi, 2021. "Optimal design of sustainable power-to-fuels supply chains for seasonal energy storage," Energy, Elsevier, vol. 234(C).
    8. Sánchez, Antonio & Castellano, Elena & Martín, Mariano & Vega, Pastora, 2021. "Evaluating ammonia as green fuel for power generation: A thermo-chemical perspective," Applied Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).
    3. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2022. "Reprint of: Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 250(C).
    4. Ganter, Alissa & Gabrielli, Paolo & Sansavini, Giovanni, 2024. "Near-term infrastructure rollout and investment strategies for net-zero hydrogen supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    5. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    6. Abdulrahman Joubi & Yutaro Akimoto & Keiichi Okajima, 2022. "A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates," Energies, MDPI, vol. 15(11), pages 1-14, May.
    7. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    8. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    9. Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.
    10. Lee, Ju-Sung & Cherif, Ali & Yoon, Ha-Jun & Seo, Seung-Kwon & Bae, Ju-Eon & Shin, Ho-Jin & Lee, Chulgu & Kwon, Hweeung & Lee, Chul-Jin, 2022. "Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    12. Wassermann, Timo & Muehlenbrock, Henry & Kenkel, Philipp & Zondervan, Edwin, 2022. "Supply chain optimization for electricity-based jet fuel: The case study Germany," Applied Energy, Elsevier, vol. 307(C).
    13. Wickham, David & Hawkes, Adam & Jalil-Vega, Francisca, 2022. "Hydrogen supply chain optimisation for the transport sector – Focus on hydrogen purity and purification requirements," Applied Energy, Elsevier, vol. 305(C).
    14. Kirchem, Dana & Schill, Wolf-Peter, 2023. "Power sector effects of green hydrogen production in Germany," Energy Policy, Elsevier, vol. 182(C).
    15. Egerer, Jonas & Grimm, Veronika & Niazmand, Kiana & Runge, Philipp, 2023. "The economics of global green ammonia trade – “Shipping Australian wind and sunshine to Germany”," Applied Energy, Elsevier, vol. 334(C).
    16. Zongao Xie & Qihang Jin & Guanli Su & Wei Lu, 2024. "A Review of Hydrogen Storage and Transportation: Progresses and Challenges," Energies, MDPI, vol. 17(16), pages 1-30, August.
    17. Simonas Cerniauskas & Thomas Grube & Aaron Praktiknjo & Detlef Stolten & Martin Robinius, 2019. "Future Hydrogen Markets for Transportation and Industry: The Impact of CO 2 Taxes," Energies, MDPI, vol. 12(24), pages 1-26, December.
    18. Gils, Hans Christian & Gardian, Hedda & Schmugge, Jens, 2021. "Interaction of hydrogen infrastructures with other sector coupling options towards a zero-emission energy system in Germany," Renewable Energy, Elsevier, vol. 180(C), pages 140-156.
    19. Seo, Seung-Kwon & Yun, Dong-Yeol & Lee, Chul-Jin, 2020. "Design and optimization of a hydrogen supply chain using a centralized storage model," Applied Energy, Elsevier, vol. 262(C).
    20. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.