IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v334y2023ics0306261923000260.html
   My bibliography  Save this article

The economics of global green ammonia trade – “Shipping Australian wind and sunshine to Germany”

Author

Listed:
  • Egerer, Jonas
  • Grimm, Veronika
  • Niazmand, Kiana
  • Runge, Philipp

Abstract

This paper contributes to understanding the transformation of global energy trade to green energy carriers, focusing on green ammonia as the foreseeable first green hydrogen carrier. We provide a comprehensive overview of today's ammonia trade and assess scaling options for the trade of green ammonia. To that aim, we develop an optimization model for the integrated assessment of the green ammonia value chain that covers all steps from green ammonia production in an exporting country, up to delivery to a harbor in an importing country. The model endogenously chooses among different technology options and determines cost minimal operation. In a case study, we apply the model to the large-scale import of ammonia from Australia to Germany in a scenario for 2030. The results show that green ammonia can reach cost parity with gray ammonia even for moderate gas prices (but not necessarily with blue ammonia) if CO2 prices are high enough. We also provide a sensitivity analysis with respect to the interest rate and other key technical and economic parameters and show that cracking ammonia to provide pure hydrogen comes at a 45% cost markup per MWh at the destination.

Suggested Citation

  • Egerer, Jonas & Grimm, Veronika & Niazmand, Kiana & Runge, Philipp, 2023. "The economics of global green ammonia trade – “Shipping Australian wind and sunshine to Germany”," Applied Energy, Elsevier, vol. 334(C).
  • Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000260
    DOI: 10.1016/j.apenergy.2023.120662
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923000260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    2. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
    3. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    4. Fasihi, Mahdi & Weiss, Robert & Savolainen, Jouni & Breyer, Christian, 2021. "Global potential of green ammonia based on hybrid PV-wind power plants," Applied Energy, Elsevier, vol. 294(C).
    5. Runge, Philipp & Sölch, Christian & Albert, Jakob & Wasserscheid, Peter & Zöttl, Gregor & Grimm, Veronika, 2019. "Economic comparison of different electric fuels for energy scenarios in 2035," Applied Energy, Elsevier, vol. 233, pages 1078-1093.
    6. Cesaro, Zac & Ives, Matthew & Nayak-Luke, Richard & Mason, Mike & Bañares-Alcántara, René, 2021. "Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants," Applied Energy, Elsevier, vol. 282(PA).
    7. Afif, Ahmed & Radenahmad, Nikdalila & Cheok, Quentin & Shams, Shahriar & Kim, Jung H. & Azad, Abul K., 2016. "Ammonia-fed fuel cells: a comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 822-835.
    8. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    9. Mahdi Fasihi & Dmitrii Bogdanov & Christian Breyer, 2017. "Long-Term Hydrocarbon Trade Options for the Maghreb Region and Europe—Renewable Energy Based Synthetic Fuels for a Net Zero Emissions World," Sustainability, MDPI, vol. 9(2), pages 1-24, February.
    10. Niermann, M. & Timmerberg, S. & Drünert, S. & Kaltschmitt, M., 2021. "Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shin, Jisoo & Park, Sungwook, 2024. "Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy," Energy, Elsevier, vol. 289(C).
    2. Egerer, Jonas & Farhang-Damghani, Nima & Grimm, Veronika & Runge, Philipp, 2024. "The industry transformation from fossil fuels to hydrogen will reorganize value chains: Big picture and case studies for Germany," Applied Energy, Elsevier, vol. 358(C).
    3. Ephraim Bonah Agyekum & Jeffrey Dankwa Ampah & Solomon Eghosa Uhunamure & Karabo Shale & Ifeoma Prisca Onyenegecha & Vladimir Ivanovich Velkin, 2023. "Can Africa Serve Europe with Hydrogen Energy from Its Renewables?—Assessing the Economics of Shipping Hydrogen and Hydrogen Carriers to Europe from Different Parts of the Continent," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    4. Jinyi Hu & Yongbao Liu & Xing He & Jianfeng Zhao & Shaojun Xia, 2024. "Application of NH 3 Fuel in Power Equipment and Its Impact on NO x Emissions," Energies, MDPI, vol. 17(12), pages 1-39, June.
    5. Antweiler, Werner & Schlund, David, 2024. "The emerging international trade in hydrogen: Environmental policies, innovation, and trade dynamics," Journal of Environmental Economics and Management, Elsevier, vol. 127(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    2. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan MacA., 2024. "Techno-economics of renewable hydrogen export: A case study for Australia-Japan," Applied Energy, Elsevier, vol. 374(C).
    3. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    4. Blanco, Elena C. & Sánchez, Antonio & Martín, Mariano & Vega, Pastora, 2023. "Methanol and ammonia as emerging green fuels: Evaluation of a new power generation paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    5. Lee, Sanghun & Kim, Taehong & Han, Gwangwoo & Kang, Sungmin & Yoo, Young-Sung & Jeon, Sang-Yun & Bae, Joongmyeon, 2021. "Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    7. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    8. Farajiamiri, Mina & Meyer, Jörn-Christian & Walther, Grit, 2023. "Multi-objective optimization of renewable fuel supply chains regarding cost, land use, and water use," Applied Energy, Elsevier, vol. 349(C).
    9. Lee, Ju-Sung & Cherif, Ali & Yoon, Ha-Jun & Seo, Seung-Kwon & Bae, Ju-Eon & Shin, Ho-Jin & Lee, Chulgu & Kwon, Hweeung & Lee, Chul-Jin, 2022. "Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Hren, Robert & Vujanović, Annamaria & Van Fan, Yee & Klemeš, Jiří Jaromír & Krajnc, Damjan & Čuček, Lidija, 2023. "Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Kirchem, Dana & Schill, Wolf-Peter, 2023. "Power sector effects of green hydrogen production in Germany," Energy Policy, Elsevier, vol. 182(C).
    12. Brigljević, Boris & Byun, Manhee & Lim, Hankwon, 2020. "Design, economic evaluation, and market uncertainty analysis of LOHC-based, CO2 free, hydrogen delivery systems," Applied Energy, Elsevier, vol. 274(C).
    13. Viviana Negro & Michel Noussan & David Chiaramonti, 2023. "The Potential Role of Ammonia for Hydrogen Storage and Transport: A Critical Review of Challenges and Opportunities," Energies, MDPI, vol. 16(17), pages 1-19, August.
    14. Tawalbeh, Muhammad & Murtaza, Sana Z.M. & Al-Othman, Amani & Alami, Abdul Hai & Singh, Karnail & Olabi, Abdul Ghani, 2022. "Ammonia: A versatile candidate for the use in energy storage systems," Renewable Energy, Elsevier, vol. 194(C), pages 955-977.
    15. Simonas Cerniauskas & Thomas Grube & Aaron Praktiknjo & Detlef Stolten & Martin Robinius, 2019. "Future Hydrogen Markets for Transportation and Industry: The Impact of CO 2 Taxes," Energies, MDPI, vol. 12(24), pages 1-26, December.
    16. Timmerberg, Sebastian & Kaltschmitt, Martin, 2019. "Hydrogen from renewables: Supply from North Africa to Central Europe as blend in existing pipelines – Potentials and costs," Applied Energy, Elsevier, vol. 237(C), pages 795-809.
    17. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    18. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    19. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    20. Ives, Matthew & Cesaro, Zac & Bramstoft, Rasmus & Bañares-Alcántara, René, 2023. "Facilitating deep decarbonization via sector coupling of green hydrogen and ammonia," INET Oxford Working Papers 2023-04, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.