IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4829-d610449.html
   My bibliography  Save this article

Dynamic Modeling of HVDC for Power System Stability Assessment: A Review, Issues, and Recommendations

Author

Listed:
  • Tarek Abedin

    (Department of Electrical and Electronics Engineering, College of Engineering, University Tenaga Nasional, Kajang 43000, Malaysia)

  • M. Shahadat Hossain Lipu

    (Department of Electrical, Electronic and Systems Engineering, University Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Mahammad A. Hannan

    (Department of Electrical and Electronics Engineering, College of Engineering, University Tenaga Nasional, Kajang 43000, Malaysia)

  • Pin Jern Ker

    (Department of Electrical and Electronics Engineering, College of Engineering, University Tenaga Nasional, Kajang 43000, Malaysia)

  • Safwan A. Rahman

    (Department of Electrical and Electronics Engineering, College of Engineering, University Tenaga Nasional, Kajang 43000, Malaysia)

  • Chong Tak Yaw

    (Institute of Sustainable Energy, University Tenaga Nasional, Kajang 4300, Malaysia)

  • Sieh K. Tiong

    (Institute of Sustainable Energy, University Tenaga Nasional, Kajang 4300, Malaysia)

  • Kashem M. Muttaqi

    (School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW 2522, Australia)

Abstract

High-voltage direct current (HVDC) has received considerable attention due to several advantageous features such as minimum transmission losses, enhanced stability, and control operation. An appropriate model of HVDC is necessary to assess the operating conditions as well as to analyze the transient and steady-state stabilities integrated with the AC networks. Nevertheless, the construction of an HVDC model is challenging due to the high computational cost, which needs huge ranges of modeling experience. Therefore, advanced dynamic modeling of HVDC is necessary to improve stability with minimum power loss. This paper presents a comprehensive review of the various dynamic modeling of the HVDC transmission system. In line with this matter, an in-depth investigation of various HVDC mathematical models is carried out including average-value modeling (AVM), voltage source converter (VSC), and line-commutated converter (LCC). Moreover, numerous stability assessment models of HVDC are outlined with regard to stability improvement models, current-source system stability, HVDC link stability, and steady-state rotor angle stability. In addition, the various control schemes of LCC-HVDC systems and modular multilevel converter- multi-terminal direct current (MMC-MTDC) are highlighted. This paper also identifies the key issues, the problems of the existing HVDC models as well as providing some selective suggestions for future improvement. All the highlighted insights in this review will hopefully lead to increased efforts toward the enhancement of the modeling for the HVDC system.

Suggested Citation

  • Tarek Abedin & M. Shahadat Hossain Lipu & Mahammad A. Hannan & Pin Jern Ker & Safwan A. Rahman & Chong Tak Yaw & Sieh K. Tiong & Kashem M. Muttaqi, 2021. "Dynamic Modeling of HVDC for Power System Stability Assessment: A Review, Issues, and Recommendations," Energies, MDPI, vol. 14(16), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4829-:d:610449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naz Niamul Islam & M A Hannan & Azah Mohamed & Hussain Shareef, 2016. "Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-17, January.
    2. Pathak, A.K. & Sharma, M.P & Bundele, Mahesh, 2015. "A critical review of voltage and reactive power management of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 460-471.
    3. Ching-Hung Lee & Bo-Ren Chung, 2012. "Adaptive backstepping controller design for nonlinear uncertain systems using fuzzy neural systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(10), pages 1855-1869.
    4. Hassan Haes Alhelou & Mohamad Esmail Hamedani-Golshan & Takawira Cuthbert Njenda & Pierluigi Siano, 2019. "A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges," Energies, MDPI, vol. 12(4), pages 1-28, February.
    5. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Ying Wang & Youbin Zhou & Dahu Li & Dejun Shao & Kan Cao & Kunpeng Zhou & Defu Cai, 2020. "The Influence of VSC–HVDC Reactive Power Control Mode on AC Power System Stability," Energies, MDPI, vol. 13(7), pages 1-11, April.
    7. Liu, Li-qun & Liu, Chun-xia, 2016. "VSCs-HVDC may improve the Electrical Grid Architecture in future world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1162-1170.
    8. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    9. Benasla, Mokhtar & Allaoui, Tayeb & Brahami, Mostefa & Denaï, Mouloud & Sood, Vijay K., 2018. "HVDC links between North Africa and Europe: Impacts and benefits on the dynamic performance of the European system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3981-3991.
    10. Vural, Ahmet Mete, 2016. "Contribution of high voltage direct current transmission systems to inter-area oscillation damping: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 892-915.
    11. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    12. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruixiong Yang & Ke Fang & Jianfu Chen & Yong Chen & Min Liu & Qingxu Meng, 2023. "A Novel Protection Strategy for Single Pole-to-Ground Fault in Multi-Terminal DC Distribution Network," Energies, MDPI, vol. 16(6), pages 1-16, March.
    2. Hanan Tariq & Stanislaw Czapp & Sarmad Tariq & Khalid Mehmood Cheema & Aqarib Hussain & Ahmad H. Milyani & Sultan Alghamdi & Z. M. Salem Elbarbary, 2022. "Comparative Analysis of Reactive Power Compensation Devices in a Real Electric Substation," Energies, MDPI, vol. 15(12), pages 1-17, June.
    3. Innocent Ewean Davidson & Oluwafemi Emmanuel Oni & Anuoluwapo Aluko & Elutunji Buraimoh, 2022. "Enhancing the Performance of Eskom’s Cahora Bassa HVDC Scheme and Harmonic Distortion Minimization of LCC-HVDC Scheme Using the VSC-HVDC Link," Energies, MDPI, vol. 15(11), pages 1-17, May.
    4. Meraa Arab & Waleed Fadel, 2024. "Optimal Reactive Power Flow of AC-DC Power System with Shunt Capacitors Using Backtracking Search Algorithm," Energies, MDPI, vol. 17(3), pages 1-15, February.
    5. Can Ding & Xiaojian Tian & Taiping Nie & Zhao Yuan, 2021. "Power Transfer Control Strategy Based on True Bipolar MMC-MTDC System," Energies, MDPI, vol. 14(24), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nansheng Pang & Wenjing Guo, 2019. "Uncertain Hybrid Multiple Attribute Group Decision of Offshore Wind Power Transmission Mode Based on theVIKOR Method," Sustainability, MDPI, vol. 11(21), pages 1-21, November.
    2. Ardelean, Mircea & Minnebo, Philip, 2023. "The suitability of seas and shores for building submarine power interconnections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    4. Jiyang Wu & Qiang Li & Qian Chen & Guangqiang Peng & Jinyu Wang & Qiang Fu & Bo Yang, 2022. "Evaluation, Analysis and Diagnosis for HVDC Transmission System Faults via Knowledge Graph under New Energy Systems Construction: A Critical Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    5. Héctor García & Juan Segundo & Osvaldo Rodríguez-Hernández & Rafael Campos-Amezcua & Oscar Jaramillo, 2018. "Harmonic Modelling of the Wind Turbine Induction Generator for Dynamic Analysis of Power Quality," Energies, MDPI, vol. 11(1), pages 1-19, January.
    6. Li, Bei & Li, Jiangchen, 2021. "Probabilistic sizing of a low-carbon emission power system considering HVDC transmission and microgrid clusters," Applied Energy, Elsevier, vol. 304(C).
    7. Duc Nguyen Huu, 2021. "A Novel Adaptive Control Approach Based on Available Headroom of the VSC-HVDC for Enhancement of the AC Voltage Stability," Energies, MDPI, vol. 14(11), pages 1-30, May.
    8. Roland Ryndzionek & Łukasz Sienkiewicz, 2020. "Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems," Energies, MDPI, vol. 13(8), pages 1-17, April.
    9. Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
    10. Edson Bortoni & Zulcy de Souza & Augusto Viana & Helcio Villa-Nova & Ângelo Rezek & Luciano Pinto & Roberto Siniscalchi & Rafael Bragança & José Bernardes, 2019. "The Benefits of Variable Speed Operation in Hydropower Plants Driven by Francis Turbines," Energies, MDPI, vol. 12(19), pages 1-20, September.
    11. Itiki, Rodney & Manjrekar, Madhav & Di Santo, Silvio Giuseppe & Machado, Luis Fernando M., 2020. "Technical feasibility of Japan-Taiwan-Philippines HVdc interconnector to the Asia Pacific Super Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    13. Hyuk-Il Kwon & Yun-Sung Cho & Sang-Min Choi, 2020. "A Study on Optimal Power System Reinforcement Measures Following Renewable Energy Expansion," Energies, MDPI, vol. 13(22), pages 1-34, November.
    14. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    15. Qingshan Gong & Yurong Xiong & Zhigang Jiang & Xugang Zhang & Mingmao Hu & Zhanlong Cao, 2022. "Economic, Environmental and Social Benefits Analysis of Remanufacturing Strategies for Used Products," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
    16. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    18. Jaesik Kang, 2022. "Comprehensive Analysis of Transient Overvoltage Phenomena for Metal-Oxide Varistor Surge Arrester in LCC-HVDC Transmission System with Special Protection Scheme," Energies, MDPI, vol. 15(19), pages 1-17, September.
    19. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Tadej Skrjanc & Rafael Mihalic & Urban Rudez, 2020. "Principal Component Analysis (PCA)-Supported Underfrequency Load Shedding Algorithm," Energies, MDPI, vol. 13(22), pages 1-9, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4829-:d:610449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.