IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2921-d1104376.html
   My bibliography  Save this article

A Novel Protection Strategy for Single Pole-to-Ground Fault in Multi-Terminal DC Distribution Network

Author

Listed:
  • Ruixiong Yang

    (DC Power Distribution and Consumption Technology Research Center, Guangdong Power Grid Co., Ltd., Zhuhai 519099, China)

  • Ke Fang

    (Energy and Electricity Research Center, Jinan University, Zhuhai 519070, China)

  • Jianfu Chen

    (DC Power Distribution and Consumption Technology Research Center, Guangdong Power Grid Co., Ltd., Zhuhai 519099, China)

  • Yong Chen

    (DC Power Distribution and Consumption Technology Research Center, Guangdong Power Grid Co., Ltd., Zhuhai 519099, China)

  • Min Liu

    (Energy and Electricity Research Center, Jinan University, Zhuhai 519070, China)

  • Qingxu Meng

    (Energy and Electricity Research Center, Jinan University, Zhuhai 519070, China)

Abstract

The single pole-to-ground (SPG) fault is one of critical failures which will have a serious impact on the stable operation of the multi-terminal DC distribution network based on the modular multilevel converter (MMC). It is very significant to analyze fault characteristics for detecting faults and protection design. This paper established the DC SPG fault model, which showed that in the presence of a reactor, the short-circuit current was reduced from 2.3 kA to 1 kA at 6 ms after the fault. Then, a novel SPG fault protection strategy was proposed, which detected the current derivative in connection transformer grounding branch. When the value increases past the threshold of current derivative, small resistance was switched on to increase fault current. Thus, the reliability of differential protection was enhanced. Compared with the traditional protection method, the proposed method does not need communication, and improved the speed of protection. Finally, the simulation model was established in PSCAD/EMTDC. The model included three converter stations: T1, T2 and T3. Among them, T1 outputs power, and T2 and T3 receive power. The results of RTDS showed that the DC circuit breaker operated within 3 ms, the three-port circuit breaker worked within 50 ms, which proves that the proposed strategy was effective. At this time, the system switched from the T1–T2–T3 three-terminal networking operation mode to the T1–T2 two-terminal hand-in-hand operation mode. Since the T3 terminal no longer received power, the transmission power of the T1 terminal decreased, and the received power of the T2 terminal remained unchanged.

Suggested Citation

  • Ruixiong Yang & Ke Fang & Jianfu Chen & Yong Chen & Min Liu & Qingxu Meng, 2023. "A Novel Protection Strategy for Single Pole-to-Ground Fault in Multi-Terminal DC Distribution Network," Energies, MDPI, vol. 16(6), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2921-:d:1104376
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2921/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2921/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tarek Abedin & M. Shahadat Hossain Lipu & Mahammad A. Hannan & Pin Jern Ker & Safwan A. Rahman & Chong Tak Yaw & Sieh K. Tiong & Kashem M. Muttaqi, 2021. "Dynamic Modeling of HVDC for Power System Stability Assessment: A Review, Issues, and Recommendations," Energies, MDPI, vol. 14(16), pages 1-25, August.
    2. Blond, S. Le & Bertho, R. & Coury, D.V. & Vieira, J.C.M., 2016. "Design of protection schemes for multi-terminal HVDC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 965-974.
    3. Zheng Xu & Huangqing Xiao & Liang Xiao & Zheren Zhang, 2018. "DC Fault Analysis and Clearance Solutions of MMC-HVDC Systems," Energies, MDPI, vol. 11(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    2. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    3. Mani Ashouri & Filipe Faria da Silva & Claus Leth Bak, 2019. "A Harmonic Based Pilot Protection Scheme for VSC-MTDC Grids with PWM Converters," Energies, MDPI, vol. 12(6), pages 1-16, March.
    4. Munif Nazmus Sakib & Sahar Pirooz Azad & Mehrdad Kazerani, 2022. "A Critical Review of Modular Multilevel Converter Configurations and Submodule Topologies from DC Fault Blocking and Ride-Through Capabilities Viewpoints for HVDC Applications," Energies, MDPI, vol. 15(11), pages 1-32, June.
    5. Waqas Javed & Dong Chen & Mohamed Emad Farrag & Yan Xu, 2019. "System Configuration, Fault Detection, Location, Isolation and Restoration: A Review on LVDC Microgrid Protections," Energies, MDPI, vol. 12(6), pages 1-30, March.
    6. Xiaomin Qi & Wei Pei & Luyang Li & Li Kong, 2018. "A Fast DC Fault Detection Method for Multi-Terminal AC/DC Hybrid Distribution Network Based on Voltage Change Rate of DC Current-Limiting Inductor," Energies, MDPI, vol. 11(7), pages 1-22, July.
    7. Muhammad Haroon Nadeem & Xiaodong Zheng & Nengling Tai & Mehr Gul, 2018. "Identification and Isolation of Faults in Multi-terminal High Voltage DC Networks with Hybrid Circuit Breakers," Energies, MDPI, vol. 11(5), pages 1-21, April.
    8. Perez-Molina, M.J. & Larruskain, D.M. & Eguia Lopez, P. & Buigues, G. & Valverde, V., 2021. "Review of protection systems for multi-terminal high voltage direct current grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. María José Pérez Molina & Dunixe Marene Larruskain & Pablo Eguía López & Agurtzane Etxegarai, 2019. "Analysis of Local Measurement-Based Algorithms for Fault Detection in a Multi-Terminal HVDC Grid," Energies, MDPI, vol. 12(24), pages 1-20, December.
    10. Meraa Arab & Waleed Fadel, 2024. "Optimal Reactive Power Flow of AC-DC Power System with Shunt Capacitors Using Backtracking Search Algorithm," Energies, MDPI, vol. 17(3), pages 1-15, February.
    11. Ricardo Granizo Arrabé & Carlos A. Platero & Fernando Álvarez Gómez & Emilio Rebollo López, 2018. "New Differential Protection Method for Multiterminal HVDC Cable Networks," Energies, MDPI, vol. 11(12), pages 1-16, December.
    12. Raheel Muzzammel & Ali Raza, 2020. "A Support Vector Machine Learning-Based Protection Technique for MT-HVDC Systems," Energies, MDPI, vol. 13(24), pages 1-33, December.
    13. Navid Bayati & Hamid Reza Baghaee & Mehdi Savaghebi & Amin Hajizadeh & Mohsen N. Soltani & Zhengyu Lin, 2021. "DC Fault Current Analyzing, Limiting, and Clearing in DC Microgrid Clusters," Energies, MDPI, vol. 14(19), pages 1-19, October.
    14. Ho-Yun Lee & Mansoor Asif & Kyu-Hoon Park & Hyun-Min Mun & Bang-Wook Lee, 2019. "Appropriate Protection Scheme for DC Grid Based on the Half Bridge Modular Multilevel Converter System," Energies, MDPI, vol. 12(10), pages 1-25, May.
    15. Yuqi Pang & Gang Ma & Xunyu Liu & Xiaotian Xu & Xinyuan Zhang, 2021. "A New MMC Sub-Module Topology with DC Fault Blocking Capability and Capacitor Voltage Self-Balancing Capability," Energies, MDPI, vol. 14(12), pages 1-17, June.
    16. Can Ding & Xiaojian Tian & Taiping Nie & Zhao Yuan, 2021. "Power Transfer Control Strategy Based on True Bipolar MMC-MTDC System," Energies, MDPI, vol. 14(24), pages 1-18, December.
    17. Hanan Tariq & Stanislaw Czapp & Sarmad Tariq & Khalid Mehmood Cheema & Aqarib Hussain & Ahmad H. Milyani & Sultan Alghamdi & Z. M. Salem Elbarbary, 2022. "Comparative Analysis of Reactive Power Compensation Devices in a Real Electric Substation," Energies, MDPI, vol. 15(12), pages 1-17, June.
    18. Li, Jianwei & Yang, Qingqing & Mu, Hao & Le Blond, Simon & He, Hongwen, 2018. "A new fault detection and fault location method for multi-terminal high voltage direct current of offshore wind farm," Applied Energy, Elsevier, vol. 220(C), pages 13-20.
    19. Innocent Ewean Davidson & Oluwafemi Emmanuel Oni & Anuoluwapo Aluko & Elutunji Buraimoh, 2022. "Enhancing the Performance of Eskom’s Cahora Bassa HVDC Scheme and Harmonic Distortion Minimization of LCC-HVDC Scheme Using the VSC-HVDC Link," Energies, MDPI, vol. 15(11), pages 1-17, May.
    20. Geon Kim & Jin Sung Lee & Jin Hyo Park & Hyun Duck Choi & Myoung Jin Lee, 2021. "A Zero Crossing Hybrid Bidirectional DC Circuit Breaker for HVDC Transmission Systems," Energies, MDPI, vol. 14(5), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2921-:d:1104376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.