IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4808-d298889.html
   My bibliography  Save this article

Analysis of Local Measurement-Based Algorithms for Fault Detection in a Multi-Terminal HVDC Grid

Author

Listed:
  • María José Pérez Molina

    (Department of Electrical Engineering, Faculty of Engineering of Bilbao, University of the Basque Country UPV/EHU, Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain)

  • Dunixe Marene Larruskain

    (Department of Electrical Engineering, Faculty of Engineering of Bilbao, University of the Basque Country UPV/EHU, Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain)

  • Pablo Eguía López

    (Department of Electrical Engineering, Faculty of Engineering of Bilbao, University of the Basque Country UPV/EHU, Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain)

  • Agurtzane Etxegarai

    (Department of Electrical Engineering, Faculty of Engineering of Bilbao, University of the Basque Country UPV/EHU, Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain)

Abstract

One of the most important challenges of developing multi-terminal (MT) high voltage direct current (HVDC) grids is the system performance under fault conditions. It must be highlighted that the operating time of the protection system needs to be shorter than a few milliseconds. Due to this restrictive requirement of speed, local measurement based algorithms are mostly used as primary protection since they present an appropriate operation speed. This paper focuses on the analysis of local measurement based algorithms, specifically overcurrent, undervoltage, rate-of-change-of-current, and rate-of-change-of-voltage algorithms. A review of these fault detection algorithms is presented. Furthermore, these algorithms are applied to a multi-terminal grid, where the influence of fault location and fault resistance is assessed. Then, their performances are compared in terms of detection speed and maximum current interrupted by the HVDC circuit breakers. This analysis aims to enhance the protection systems by facilitating the selection of the most suitable algorithm for primary or backup protection systems. In addition, two new fault type identification algorithms based on the rate-of-change-of-voltage and rate-of-change-of-current are proposed and analyzed. The paper finally includes a comparison between the previously reviewed local measurement based algorithms found in the literature and the simulation results of the present work.

Suggested Citation

  • María José Pérez Molina & Dunixe Marene Larruskain & Pablo Eguía López & Agurtzane Etxegarai, 2019. "Analysis of Local Measurement-Based Algorithms for Fault Detection in a Multi-Terminal HVDC Grid," Energies, MDPI, vol. 12(24), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4808-:d:298889
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4808/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4808/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blond, S. Le & Bertho, R. & Coury, D.V. & Vieira, J.C.M., 2016. "Design of protection schemes for multi-terminal HVDC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 965-974.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María José Pérez-Molina & Dunixe Marene Larruskain & Pablo Eguia & Oihane Abarrategi, 2021. "Circuit Breaker Failure Protection Strategy for HVDC Grids," Energies, MDPI, vol. 14(14), pages 1-15, July.
    2. Sangyong Park & Hyosang Choi, 2020. "Operation Characteristics for the Superconducting Arc-Induction Type DC Circuit Breaker," Energies, MDPI, vol. 13(15), pages 1-13, July.
    3. Perez-Molina, M.J. & Larruskain, D.M. & Eguia Lopez, P. & Buigues, G. & Valverde, V., 2021. "Review of protection systems for multi-terminal high voltage direct current grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    2. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    3. Mani Ashouri & Filipe Faria da Silva & Claus Leth Bak, 2019. "A Harmonic Based Pilot Protection Scheme for VSC-MTDC Grids with PWM Converters," Energies, MDPI, vol. 12(6), pages 1-16, March.
    4. Waqas Javed & Dong Chen & Mohamed Emad Farrag & Yan Xu, 2019. "System Configuration, Fault Detection, Location, Isolation and Restoration: A Review on LVDC Microgrid Protections," Energies, MDPI, vol. 12(6), pages 1-30, March.
    5. Muhammad Haroon Nadeem & Xiaodong Zheng & Nengling Tai & Mehr Gul, 2018. "Identification and Isolation of Faults in Multi-terminal High Voltage DC Networks with Hybrid Circuit Breakers," Energies, MDPI, vol. 11(5), pages 1-21, April.
    6. Perez-Molina, M.J. & Larruskain, D.M. & Eguia Lopez, P. & Buigues, G. & Valverde, V., 2021. "Review of protection systems for multi-terminal high voltage direct current grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Ruixiong Yang & Ke Fang & Jianfu Chen & Yong Chen & Min Liu & Qingxu Meng, 2023. "A Novel Protection Strategy for Single Pole-to-Ground Fault in Multi-Terminal DC Distribution Network," Energies, MDPI, vol. 16(6), pages 1-16, March.
    8. Raheel Muzzammel & Ali Raza, 2020. "A Support Vector Machine Learning-Based Protection Technique for MT-HVDC Systems," Energies, MDPI, vol. 13(24), pages 1-33, December.
    9. Li, Jianwei & Yang, Qingqing & Mu, Hao & Le Blond, Simon & He, Hongwen, 2018. "A new fault detection and fault location method for multi-terminal high voltage direct current of offshore wind farm," Applied Energy, Elsevier, vol. 220(C), pages 13-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4808-:d:298889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.