IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p104-d125223.html
   My bibliography  Save this article

Harmonic Modelling of the Wind Turbine Induction Generator for Dynamic Analysis of Power Quality

Author

Listed:
  • Héctor García

    (Consejo Nacional de Ciencia y Tecnología (CONACYT), 03940 México, Mexico
    Renewable Energies Institute, National Autonomous University of Mexico, A.P. 34, 62580 Temixco, Mor., México, Mexico)

  • Juan Segundo

    (Faculty of Engineering, Autonomous University of San Luis Potosí, Manuel Nava No. 8, San Luis Potosí S.L.P., 78290 México, Mexico)

  • Osvaldo Rodríguez-Hernández

    (Renewable Energies Institute, National Autonomous University of Mexico, A.P. 34, 62580 Temixco, Mor., México, Mexico)

  • Rafael Campos-Amezcua

    (Renewable Energies Institute, National Autonomous University of Mexico, A.P. 34, 62580 Temixco, Mor., México, Mexico)

  • Oscar Jaramillo

    (Renewable Energies Institute, National Autonomous University of Mexico, A.P. 34, 62580 Temixco, Mor., México, Mexico)

Abstract

Given the increasing integration of wind-based generation systems into the electric grid, efforts have been made to deal with the problem of power quality associated with the intermittent nature of these systems. This paper presents a new modelling approach oriented towards harmonic distortion analysis of the induction machine for wind power applications. The model is developed using companion harmonic circuit modelling, which is a natural approach for analysis of the adverse effects of harmonic distortion in electric power systems, and represents an easier solution method than the well known dynamic harmonic domain, since it solves algebraic equations instead of state-space differential equations. The structure of the companion circuits simplifies both the formulation and solution for power systems with wind-based generation systems. This approach is especially useful for analysis of the harmonic interaction in transient and steady states between the wind power generator and the power system, whose interconnection is made through electronic converters. The proposed model allows us to compute the dynamics of the wind turbine, which are influenced by disturbances such as changes in the wind velocity, voltage fluctuations, electric waveform distortion, and mechanical vibrations, among other factors. Moreover, the cross-coupling between harmonic components at different frequencies is considered. The proposed model represents an integral framework of the electrical and mechanical subsystems of a wind turbine, allowing for analysis of the interactions between them, and understanding power quality degradation behaviour as well as causes and consequences, while also giving useful information on the field of simulation and control. To test the performance of the proposed model, a test power system is used to obtain the behaviour of a wind turbine induction generator in response to typical power quality disturbances, i.e., harmonic distortion, and voltage sags and swells. Then, the dynamics of the variables considering their harmonic interactions are analysed.

Suggested Citation

  • Héctor García & Juan Segundo & Osvaldo Rodríguez-Hernández & Rafael Campos-Amezcua & Oscar Jaramillo, 2018. "Harmonic Modelling of the Wind Turbine Induction Generator for Dynamic Analysis of Power Quality," Energies, MDPI, vol. 11(1), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:104-:d:125223
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gupta, Neeraj, 2016. "A review on the inclusion of wind generation in power system studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 530-543.
    2. Pathak, A.K. & Sharma, M.P & Bundele, Mahesh, 2015. "A critical review of voltage and reactive power management of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 460-471.
    3. Nemmour, A.L. & Mehazzem, F. & Khezzar, A. & Hacil, M. & Louze, L. & Abdessemed, R., 2010. "Advanced Backstepping controller for induction generator using multi-scalar machine model for wind power purposes," Renewable Energy, Elsevier, vol. 35(10), pages 2375-2380.
    4. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thales Ramos & Manoel F. Medeiros Júnior & Ricardo Pinheiro & Arthur Medeiros, 2019. "Slip Control of a Squirrel Cage Induction Generator Driven by an Electromagnetic Frequency Regulator to Achieve the Maximum Power Point Tracking," Energies, MDPI, vol. 12(11), pages 1-19, June.
    2. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    3. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    4. Koldo Redondo & José Julio Gutiérrez & Izaskun Azcarate & Purificación Saiz & Luis Alberto Leturiondo & Sofía Ruiz de Gauna, 2019. "Experimental Study of the Summation of Flicker Caused by Wind Turbines," Energies, MDPI, vol. 12(12), pages 1-13, June.
    5. Minh Ly Duc & Petr Bilik & Radek Martinek, 2023. "Harmonics Signal Feature Extraction Techniques: A Review," Mathematics, MDPI, vol. 11(8), pages 1-36, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
    2. Dragomir, George & Șerban, Alexandru & Năstase, Gabriel & Brezeanu, Alin Ionuț, 2016. "Wind energy in Romania: A review from 2009 to 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 129-143.
    3. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    4. Tarek Abedin & M. Shahadat Hossain Lipu & Mahammad A. Hannan & Pin Jern Ker & Safwan A. Rahman & Chong Tak Yaw & Sieh K. Tiong & Kashem M. Muttaqi, 2021. "Dynamic Modeling of HVDC for Power System Stability Assessment: A Review, Issues, and Recommendations," Energies, MDPI, vol. 14(16), pages 1-25, August.
    5. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    6. Ji Han & Li Li & Huihui Song & Meng Liu & Zongxun Song & Yanbin Qu, 2022. "An Equivalent Model of Wind Farm Based on Multivariate Multi-Scale Entropy and Multi-View Clustering," Energies, MDPI, vol. 15(16), pages 1-17, August.
    7. Mohamed Zribi & Muthana Alrifai & Mohamed Rayan, 2017. "Sliding Mode Control of a Variable- Speed Wind Energy Conversion System Using a Squirrel Cage Induction Generator," Energies, MDPI, vol. 10(5), pages 1-21, May.
    8. Kalair, A. & Abas, N. & Khan, N., 2016. "Comparative study of HVAC and HVDC transmission systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1653-1675.
    9. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    10. Mahmud, Nasif & Zahedi, A., 2016. "Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 582-595.
    11. Bielecki, Sławomir & Skoczkowski, Tadeusz, 2018. "An enhanced concept of Q-power management," Energy, Elsevier, vol. 162(C), pages 335-353.
    12. Mohammed W. Baidas & Mastoura F. Almusailem & Rashad M. Kamel & Sultan Sh. Alanzi, 2022. "Renewable-Energy-Powered Cellular Base-Stations in Kuwait’s Rural Areas," Energies, MDPI, vol. 15(7), pages 1-29, March.
    13. Rafael Sebastián, 2021. "Review on Dynamic Simulation of Wind Diesel Isolated Microgrids," Energies, MDPI, vol. 14(7), pages 1-17, March.
    14. Hossain, M.J. & Pota, H.R. & Ramos, R.A., 2011. "Robust STATCOM control for the stabilisation of fixed-speed wind turbines during low voltages," Renewable Energy, Elsevier, vol. 36(11), pages 2897-2905.
    15. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2019. "Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    16. Paweł Pijarski & Piotr Kacejko & Marek Wancerz, 2022. "Voltage Control in MV Network with Distributed Generation—Possibilities of Real Quality Enhancement," Energies, MDPI, vol. 15(6), pages 1-22, March.
    17. Jia, Ke & Li, Yanbin & Fang, Yu & Zheng, Liming & Bi, Tianshu & Yang, Qixun, 2018. "Transient current similarity based protection for wind farm transmission lines," Applied Energy, Elsevier, vol. 225(C), pages 42-51.
    18. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    19. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
    20. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:104-:d:125223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.