IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2946-d558025.html
   My bibliography  Save this article

The Significance of the Adaptive Thermal Comfort Practice over the Structure Retrofits to Sustain Indoor Thermal Comfort

Author

Listed:
  • Aiman Albatayneh

    (School of Natural Resources Engineering and Management, German Jordanian University, P.O. Box 35247, Amman 11180, Jordan)

  • Mustafa Jaradat

    (School of Natural Resources Engineering and Management, German Jordanian University, P.O. Box 35247, Amman 11180, Jordan)

  • Mhd Bashar AlKhatib

    (School of Natural Resources Engineering and Management, German Jordanian University, P.O. Box 35247, Amman 11180, Jordan)

  • Ramez Abdallah

    (Mechanical & Mechatronics Engineering Department, Faculty of Engineering & Information Technology, An-Najah National University, P.O. Box 7, Nablus 00970, Palestine)

  • Adel Juaidi

    (Mechanical & Mechatronics Engineering Department, Faculty of Engineering & Information Technology, An-Najah National University, P.O. Box 7, Nablus 00970, Palestine)

  • Francisco Manzano-Agugliaro

    (Department of Engineering, ceiA3, University of Almeria, 04120 Almeria, Spain)

Abstract

Any building’s design should sustain thermal comfort for occupants and promote less energy usage during its lifetime using accurate building retrofits to convert existing buildings into low-energy buildings so that the heating and cooling loads can be minimized. Regarding the methodology adopted in this research, an energy model of an educational building located at the German Jordanian University in Jordan was constructed utilizing DesignBuilder computer software. In addition, it was calibrated utilizing real energy consumption data for a 12-month simulation of energy performance. Subsequently, a computerized evaluation of the roles of building envelope retrofits or the adaptive thermal comfort limits in the reduction of the overall building energy consumption was analyzed. The results of the study show that the current building’s external wall insulation, roof insulation, glazing, windows, and external shading devices are relatively energy-efficient but with high cost, resulting in significant financial losses, even though they achieved noticeable energy savings. For instance, equipping the building’s ventilation system with an economizer culminated in the highest financial profit, contributing to an annual energy savings of 155 MWh. On the other hand, in an occupant-centered approach, applying the adaptive thermal comfort model in wider ranges by adding 1 °C, 2 °C, and 3 °C to the existing operating temperatures would save a significant amount of energy with the least cost (while maintaining indoor thermal comfort), taking over any retrofit option. Using different adaptive thermal comfort scenarios (1 °C, 2 °C, and 3 °C) led to significant savings of around 5%, 12%, and 21%, respectively. However, using different retrofits techniques proved to be costly, with minimum energy savings compared to the adaptive approach.

Suggested Citation

  • Aiman Albatayneh & Mustafa Jaradat & Mhd Bashar AlKhatib & Ramez Abdallah & Adel Juaidi & Francisco Manzano-Agugliaro, 2021. "The Significance of the Adaptive Thermal Comfort Practice over the Structure Retrofits to Sustain Indoor Thermal Comfort," Energies, MDPI, vol. 14(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2946-:d:558025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2946/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2946/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raúl Castaño-Rosa & Carlos E. Rodríguez-Jiménez & Carlos Rubio-Bellido, 2018. "Adaptive Thermal Comfort Potential in Mediterranean Office Buildings: A Case Study of Torre Sevilla," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    2. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    3. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    4. Manzano-Agugliaro, Francisco & Montoya, Francisco G. & Sabio-Ortega, Andrés & García-Cruz, Amós, 2015. "Review of bioclimatic architecture strategies for achieving thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 736-755.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aiman Albatayneh & Mohammed N. Assaf & Renad Albadaineh & Adel Juaidi & Ramez Abdallah & Alberto Zabalo & Francisco Manzano-Agugliaro, 2022. "Reducing the Operating Energy of Buildings in Arid Climates through an Adaptive Approach," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    2. Jihan Muhaidat & Aiman Albatayneh & Mohammed N. Assaf & Adel Juaidi & Ramez Abdallah & Francisco Manzano-Agugliaro, 2021. "The Significance of Occupants’ Interaction with Their Environment on Reducing Cooling Loads and Dermatological Distresses in East Mediterranean Climates," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
    3. Aiman Albatayneh & Adel Juaidi & Francisco Manzano-Agugliaro, 2023. "The Negative Impact of Electrical Energy Subsidies on the Energy Consumption—Case Study from Jordan," Energies, MDPI, vol. 16(2), pages 1-17, January.
    4. Alberto-Jesus Perea-Moreno & Quetzalcoatl Hernandez-Escobedo, 2021. "The Sustainable City: Advances in Renewable Energy and Energy Saving Systems," Energies, MDPI, vol. 14(24), pages 1-3, December.
    5. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    6. Aiman Albatayneh & Renad Albadaineh & Adel Juaidi & Ramez Abdallah & Alberto Zabalo & Francisco Manzano-Agugliaro, 2022. "Enhancing the Energy Efficiency of Buildings by Shading with PV Panels in Semi-Arid Climate Zone," Sustainability, MDPI, vol. 14(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aiman Albatayneh & Dariusz Alterman & Adrian Page & Behdad Moghtaderi, 2019. "The Significance of the Adaptive Thermal Comfort Limits on the Air-Conditioning Loads in a Temperate Climate," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    2. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    3. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
    4. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    5. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    6. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    7. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    8. Małgorzata Fedorczak-Cisak & Katarzyna Nowak & Marcin Furtak, 2019. "Analysis of the Effect of Using External Venetian Blinds on the Thermal Comfort of Users of Highly Glazed Office Rooms in a Transition Season of Temperate Climate—Case Study," Energies, MDPI, vol. 13(1), pages 1-18, December.
    9. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    10. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    11. Shady Attia, 2020. "Spatial and Behavioral Thermal Adaptation in Net Zero Energy Buildings: An Exploratory Investigation," Sustainability, MDPI, vol. 12(19), pages 1-15, September.
    12. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    13. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    15. Jinmog Han & Jongkyun Bae & Jihoon Jang & Jumi Baek & Seung-Bok Leigh, 2019. "The Derivation of Cooling Set-Point Temperature in an HVAC System, Considering Mean Radiant Temperature," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    16. Carmen de la Cruz-Lovera & Alberto-Jesus Perea-Moreno & José Luis de la Cruz-Fernández & Francisco G. Montoya & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Analysis of Research Topics and Scientific Collaborations in Energy Saving Using Bibliometric Techniques and Community Detection," Energies, MDPI, vol. 12(10), pages 1-23, May.
    17. Sun, Xiaoqin & Medina, Mario A. & Lee, Kyoung Ok & Jin, Xing, 2018. "Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management," Energy, Elsevier, vol. 163(C), pages 383-391.
    18. Yuting Qi & Queena Qian & Frits Meijer & Henk Visscher, 2020. "Causes of Quality Failures in Building Energy Renovation Projects of Northern China: A Review and Empirical Study," Energies, MDPI, vol. 13(10), pages 1-19, May.
    19. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    20. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2946-:d:558025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.