IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i2p328-d196530.html
   My bibliography  Save this article

The Significance of the Adaptive Thermal Comfort Limits on the Air-Conditioning Loads in a Temperate Climate

Author

Listed:
  • Aiman Albatayneh

    (School of Natural Resources Engineering and Management, German Jordanian University, P.O. Box 35247, Amman 11180, Jordan)

  • Dariusz Alterman

    (Priority Research Centre for Frontier Energy Technologies and Utilization, The University of Newcastle, Callaghan, NSW 2308, Australia)

  • Adrian Page

    (Priority Research Centre for Frontier Energy Technologies and Utilization, The University of Newcastle, Callaghan, NSW 2308, Australia)

  • Behdad Moghtaderi

    (Priority Research Centre for Frontier Energy Technologies and Utilization, The University of Newcastle, Callaghan, NSW 2308, Australia)

Abstract

The building industry is regarded a major contributor to climate change as energy consumption from buildings accounts for 40% of the total energy. The types of thermal comfort models used to predict the heating and cooling loads are critical to save energy in operative buildings and reduce greenhouse gas emissions (GHG). In this research, the internal air temperatures were recorded for over one year under the free floating mode with no heating or cooling, then the number of hours required for heating or cooling were calculated based on fixed sets of operative temperatures (18 °C–24 °C) and the adaptive thermal comfort model to estimate the number of hours per year required for cooling and heating to sustain the occupants’ thermal comfort for four full-scale housing test modules at the campus of the University of Newcastle, Australia. The adaptive thermal comfort model significantly reduced the time necessary for mechanical cooling and heating by more than half when compared with the constant thermostat setting used by the air-conditioning systems installed on the site. It was found that the air-conditioning system with operational temperature setups using the adaptive thermal comfort model at 80% acceptability limits required almost half the operating energy when compared with fixed sets of operating temperatures. This can be achieved by applying a broader range of acceptable temperature limits and using techniques that require minimal energy to sustain the occupants’ thermal comfort.

Suggested Citation

  • Aiman Albatayneh & Dariusz Alterman & Adrian Page & Behdad Moghtaderi, 2019. "The Significance of the Adaptive Thermal Comfort Limits on the Air-Conditioning Loads in a Temperate Climate," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:328-:d:196530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/2/328/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/2/328/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raúl Castaño-Rosa & Carlos E. Rodríguez-Jiménez & Carlos Rubio-Bellido, 2018. "Adaptive Thermal Comfort Potential in Mediterranean Office Buildings: A Case Study of Torre Sevilla," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    2. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    3. Eva Maleviti & Walter Wehrmeyer & Yacob Mulugetta, 2013. "An Empirical Assessment to Express the Variability of Buildings' Energy Consumption," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 2(3), pages 55-67, July.
    4. Aiman Albatayneh & Dariusz Alterman & Adrian Page & Behdad Moghtaderi, 2018. "The Impact of the Thermal Comfort Models on the Prediction of Building Energy Consumption," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nishant Raj Kapoor & Ashok Kumar & Tabish Alam & Anuj Kumar & Kishor S. Kulkarni & Paolo Blecich, 2021. "A Review on Indoor Environment Quality of Indian School Classrooms," Sustainability, MDPI, vol. 13(21), pages 1-43, October.
    2. Iasmin Lourenço Niza & Evandro Eduardo Broday, 2022. "An Analysis of Thermal Comfort Models: Which One Is Suitable Model to Assess Thermal Reality in Brazil?," Energies, MDPI, vol. 15(15), pages 1-19, July.
    3. Aiman Albatayneh & Mohammed N. Assaf & Renad Albadaineh & Adel Juaidi & Ramez Abdallah & Alberto Zabalo & Francisco Manzano-Agugliaro, 2022. "Reducing the Operating Energy of Buildings in Arid Climates through an Adaptive Approach," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    4. Aiman Albatayneh & Adel Juaidi & Ramez Abdallah & Francisco Manzano-Agugliaro, 2021. "Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings," Energies, MDPI, vol. 14(17), pages 1-20, September.
    5. Piotr Michalak, 2021. "Selected Aspects of Indoor Climate in a Passive Office Building with a Thermally Activated Building System: A Case Study from Poland," Energies, MDPI, vol. 14(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aiman Albatayneh & Adel Juaidi & Ramez Abdallah & Francisco Manzano-Agugliaro, 2021. "Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings," Energies, MDPI, vol. 14(17), pages 1-20, September.
    2. Aiman Albatayneh & Dariusz Alterman & Adrian Page & Behdad Moghtaderi, 2018. "The Impact of the Thermal Comfort Models on the Prediction of Building Energy Consumption," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    3. Aiman Albatayneh & Mustafa Jaradat & Mhd Bashar AlKhatib & Ramez Abdallah & Adel Juaidi & Francisco Manzano-Agugliaro, 2021. "The Significance of the Adaptive Thermal Comfort Practice over the Structure Retrofits to Sustain Indoor Thermal Comfort," Energies, MDPI, vol. 14(10), pages 1-21, May.
    4. Jinmog Han & Jongkyun Bae & Jihoon Jang & Jumi Baek & Seung-Bok Leigh, 2019. "The Derivation of Cooling Set-Point Temperature in an HVAC System, Considering Mean Radiant Temperature," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    5. David Bienvenido-Huertas, 2020. "Analysis of the Impact of the Use Profile of HVAC Systems Established by the Spanish Standard to Assess Residential Building Energy Performance," Sustainability, MDPI, vol. 12(17), pages 1-19, September.
    6. Marek Dudzik, 2020. "Towards Characterization of Indoor Environment in Smart Buildings: Modelling PMV Index Using Neural Network with One Hidden Layer," Sustainability, MDPI, vol. 12(17), pages 1-37, August.
    7. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings," Energy, Elsevier, vol. 190(C).
    8. Daniel Sánchez-García & David Bienvenido-Huertas & Mónica Tristancho-Carvajal & Carlos Rubio-Bellido, 2019. "Adaptive Comfort Control Implemented Model (ACCIM) for Energy Consumption Predictions in Dwellings under Current and Future Climate Conditions: A Case Study Located in Spain," Energies, MDPI, vol. 12(8), pages 1-22, April.
    9. Wen Cao & Lin Yang & Qinyi Zhang & Lihua Chen & Weidong Wu, 2021. "Evaluation of Rural Dwellings’ Energy-Saving Retrofit with Adaptive Thermal Comfort Theory," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    10. Jonghoon Ahn, 2022. "A Network-Based Strategy to Increase the Sustainability of Building Supply Air Systems Responding to Unexpected Temperature Patterns," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
    11. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    12. Hardi K. Abdullah & Halil Z. Alibaba, 2020. "Window Design of Naturally Ventilated Offices in the Mediterranean Climate in Terms of CO 2 and Thermal Comfort Performance," Sustainability, MDPI, vol. 12(2), pages 1-33, January.
    13. Jonghoon Ahn, 2020. "Performance Analyses of Temperature Controls by a Network-Based Learning Controller for an Indoor Space in a Cold Area," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    14. Naderi, Shayan & Heslop, Simon & Chen, Dong & Watts, Scott & MacGill, Iain & Pignatta, Gloria & Sproul, Alistair, 2023. "Clustering based analysis of residential duck curve mitigation through solar pre-cooling: A case study of Australian housing stock," Renewable Energy, Elsevier, vol. 216(C).
    15. Kashif Irshad & Salem Algarni & Mohammad Tauheed Ahmad & Sayed Ameenuddin Irfan & Khairul Habib & Mostafa A.H. Abdelmohimen & Md. Hasan Zahir & Gulam Mohammed Sayeed Ahmed, 2019. "Microclimate Thermal Management Using Thermoelectric Air-Cooling Duct System Operated at Five Incremental Powers and its Effect on Sleep Adaptation of the Occupants," Energies, MDPI, vol. 12(19), pages 1-25, September.
    16. Zini, Marco & Carcasci, Carlo, 2023. "Machine learning-based monitoring method for the electricity consumption of a healthcare facility in Italy," Energy, Elsevier, vol. 262(PB).
    17. Sung Hoon Yoon & Jonghoon Ahn, 2020. "Comparative Analysis of Energy Use and Human Comfort by an Intelligent Control Model at the Change of Season," Energies, MDPI, vol. 13(22), pages 1-15, November.
    18. Aiman Albatayneh & Mohammed N. Assaf & Renad Albadaineh & Adel Juaidi & Ramez Abdallah & Alberto Zabalo & Francisco Manzano-Agugliaro, 2022. "Reducing the Operating Energy of Buildings in Arid Climates through an Adaptive Approach," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    19. Domenico Palladino & Iole Nardi & Cinzia Buratti, 2020. "Artificial Neural Network for the Thermal Comfort Index Prediction: Development of a New Simplified Algorithm," Energies, MDPI, vol. 13(17), pages 1-27, September.
    20. Zhang, Sheng & Cheng, Yong & Oladokun, Majeed Olaide & Huan, Chao & Lin, Zhang, 2019. "Heat removal efficiency of stratum ventilation for air-side modulation," Applied Energy, Elsevier, vol. 238(C), pages 1237-1249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:328-:d:196530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.