IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i16p8870-d619845.html
   My bibliography  Save this article

The Significance of Occupants’ Interaction with Their Environment on Reducing Cooling Loads and Dermatological Distresses in East Mediterranean Climates

Author

Listed:
  • Jihan Muhaidat

    (Department of Dermatology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan)

  • Aiman Albatayneh

    (School of Natural Resources Engineering and Management, German Jordanian University, P.O. Box 35247, Amman 11180, Jordan)

  • Mohammed N. Assaf

    (School of Natural Resources Engineering and Management, German Jordanian University, P.O. Box 35247, Amman 11180, Jordan)

  • Adel Juaidi

    (Mechanical and Mechatronics Engineering Department, Faculty of Engineering and Information Technology, An-Najah National University, P.O. Box 7, Nablus 00970, Palestine)

  • Ramez Abdallah

    (Mechanical and Mechatronics Engineering Department, Faculty of Engineering and Information Technology, An-Najah National University, P.O. Box 7, Nablus 00970, Palestine)

  • Francisco Manzano-Agugliaro

    (Department of Engineering, ceiA3, University of Almeria, 04120 Almeria, Spain)

Abstract

Global endeavors to respond to the problems caused by climate change and are leading to higher temperatures inside homes, which can cause skin conditions (such as eczema), lethargy, and poor concentration; disturbed sleep and fatigue are also rising. The energy performance of buildings is influenced by interactions and associations of numerous different variables, such as the envelope specifications as well as the design, technologies, apparatuses, and occupant behaviours. This paper introduces simple and sustainable strategies that are not dependent on expensive or sophisticated technologies, as they rely only on the actions practiced by the building’s occupants (movable window shading, and nighttime natural ventilation) instead of completely relying on high-cost mechanical cooling systems in buildings located in the main Eastern Mediterranean climates represented in the country of Jordan. These low-energy solutions could be applied to low-income houses in hot areas to avoid health problems, such as dermatological diseases, and save a significant amount of energy. The final results indicate that window shading has significant potential in reducing the cooling load in different climate zones. Natural ventilation exhibits high energy-saving abilities in climates that have cool nights, whereas its abilities in hot climates where nights are moderate is limited.

Suggested Citation

  • Jihan Muhaidat & Aiman Albatayneh & Mohammed N. Assaf & Adel Juaidi & Ramez Abdallah & Francisco Manzano-Agugliaro, 2021. "The Significance of Occupants’ Interaction with Their Environment on Reducing Cooling Loads and Dermatological Distresses in East Mediterranean Climates," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8870-:d:619845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/16/8870/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/16/8870/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amanda Ahl & Gina Accawi & Bryce Hudey & Melissa Lapsa & Teresa Nichols, 2019. "Occupant Behavior for Energy Conservation in Commercial Buildings: Lessons Learned from Competition at the Oak Ridge National Laboratory," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    2. Artmann, N. & Manz, H. & Heiselberg, P., 2007. "Climatic potential for passive cooling of buildings by night-time ventilation in Europe," Applied Energy, Elsevier, vol. 84(2), pages 187-201, February.
    3. Mehdi Chihib & Esther Salmerón-Manzano & Francisco Manzano-Agugliaro, 2020. "Benchmarking Energy Use at University of Almeria (Spain)," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    4. Aiman Albatayneh & Mustafa Jaradat & Mhd Bashar AlKhatib & Ramez Abdallah & Adel Juaidi & Francisco Manzano-Agugliaro, 2021. "The Significance of the Adaptive Thermal Comfort Practice over the Structure Retrofits to Sustain Indoor Thermal Comfort," Energies, MDPI, vol. 14(10), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aiman Albatayneh & Mohammed N. Assaf & Renad Albadaineh & Adel Juaidi & Ramez Abdallah & Alberto Zabalo & Francisco Manzano-Agugliaro, 2022. "Reducing the Operating Energy of Buildings in Arid Climates through an Adaptive Approach," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    2. Aiman Albatayneh & Adel Juaidi & Francisco Manzano-Agugliaro, 2023. "The Negative Impact of Electrical Energy Subsidies on the Energy Consumption—Case Study from Jordan," Energies, MDPI, vol. 16(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aiman Albatayneh & Mohammed N. Assaf & Renad Albadaineh & Adel Juaidi & Ramez Abdallah & Alberto Zabalo & Francisco Manzano-Agugliaro, 2022. "Reducing the Operating Energy of Buildings in Arid Climates through an Adaptive Approach," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    2. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    3. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    4. Chen, Xiaoming & Zhang, Quan & Zhai, Zhiqiang John & Ma, Xiaowei, 2019. "Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings," Renewable Energy, Elsevier, vol. 138(C), pages 39-53.
    5. Liwei Wen & Kyosuke Hiyama, 2018. "Target Air Change Rate and Natural Ventilation Potential Maps for Assisting with Natural Ventilation Design During Early Design Stage in China," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    6. Waqas, Adeel & Ud Din, Zia, 2013. "Phase change material (PCM) storage for free cooling of buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 607-625.
    7. Lehmann, B. & Dorer, V. & Gwerder, M. & Renggli, F. & Tödtli, J., 2011. "Thermally activated building systems (TABS): Energy efficiency as a function of control strategy, hydronic circuit topology and (cold) generation system," Applied Energy, Elsevier, vol. 88(1), pages 180-191, January.
    8. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    9. Hudobivnik, Blaž & Pajek, Luka & Kunič, Roman & Košir, Mitja, 2016. "FEM thermal performance analysis of multi-layer external walls during typical summer conditions considering high intensity passive cooling," Applied Energy, Elsevier, vol. 178(C), pages 363-375.
    10. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    11. Haolia Rahman & Hwataik Han, 2019. "Correlation of Ventilative Cooling Potentials and Building Energy Savings in Various Climatic Zones," Energies, MDPI, vol. 12(6), pages 1-10, March.
    12. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    13. Hossein Bakhtiari & Jan Akander & Mathias Cehlin & Abolfazl Hayati, 2020. "On the Performance of Night Ventilation in a Historic Office Building in Nordic Climate," Energies, MDPI, vol. 13(16), pages 1-26, August.
    14. Campaniço, Hugo & Hollmuller, Pierre & Soares, Pedro M.M., 2014. "Assessing energy savings in cooling demand of buildings using passive cooling systems based on ventilation," Applied Energy, Elsevier, vol. 134(C), pages 426-438.
    15. Cui, Shuang & Ahn, Chihyung & Wingert, Matthew C. & Leung, David & Cai, Shengqiang & Chen, Renkun, 2016. "Bio-inspired effective and regenerable building cooling using tough hydrogels," Applied Energy, Elsevier, vol. 168(C), pages 332-339.
    16. Nikola Pesic & Jaime Roset Calzada & Adrian Muros Alcojor, 2018. "Assessment of Advanced Natural Ventilation Space Cooling Potential across Southern European Coastal Region," Sustainability, MDPI, vol. 10(9), pages 1-21, August.
    17. Alberto-Jesus Perea-Moreno & Quetzalcoatl Hernandez-Escobedo, 2021. "The Sustainable City: Advances in Renewable Energy and Energy Saving Systems," Energies, MDPI, vol. 14(24), pages 1-3, December.
    18. Tadeusz Kuczyński & Anna Staszczuk, 2023. "Impact of Uninsulated Slab-on-Grade and Masonry Walls on Residential Building Overheating," Energies, MDPI, vol. 16(22), pages 1-22, November.
    19. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    20. Kuczyński, Tadeusz & Staszczuk, Anna, 2023. "Experimental study of the thermal behavior of PCM and heavy building envelope structures during summer in a temperate climate," Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8870-:d:619845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.