IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2894-d556423.html
   My bibliography  Save this article

Artificial Neural Networks for Predicting Hydrogen Production in Catalytic Dry Reforming: A Systematic Review

Author

Listed:
  • Van Thuan Le

    (Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam)

  • Elena-Niculina Dragoi

    (Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania)

  • Fares Almomani

    (Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar)

  • Yasser Vasseghian

    (Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam)

Abstract

Dry reforming of hydrocarbons, alcohols, and biological compounds is one of the most promising and effective avenues to increase hydrogen (H 2 ) production. Catalytic dry reforming is used to facilitate the reforming process. The most popular catalysts for dry reforming are Ni-based catalysts. Due to their inactivation at high temperatures, these catalysts need to use metal supports, which have received special attention from researchers in recent years. Due to the existence of a wide range of metal supports and the need for accurate detection of higher H 2 production, in this study, a systematic review and meta-analysis using ANNs were conducted to assess the hydrogen production by various catalysts in the dry reforming process. The Scopus, Embase, and Web of Science databases were investigated to retrieve the related articles from 1 January 2000 until 20 January 2021. Forty-seven articles containing 100 studies were included. To determine optimal models for three target factors (hydrocarbon conversion, hydrogen yield, and stability test time), artificial neural networks (ANNs) combined with differential evolution (DE) were applied. The best models obtained had an average relative error for the testing data of 0.52% for conversion, 3.36% for stability, and 0.03% for yield. These small differences between experimental results and predictions indicate a good generalization capability.

Suggested Citation

  • Van Thuan Le & Elena-Niculina Dragoi & Fares Almomani & Yasser Vasseghian, 2021. "Artificial Neural Networks for Predicting Hydrogen Production in Catalytic Dry Reforming: A Systematic Review," Energies, MDPI, vol. 14(10), pages 1-11, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2894-:d:556423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2894/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2894/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Judd, S.J. & Al Momani, F.A.O. & Znad, H. & Al Ketife, A.M.D., 2017. "The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 379-387.
    2. Rahul Bhosale & Anand Kumar & Fares AlMomani & Ujjal Ghosh & Mohammad Saad Anis & Konstantinos Kakosimos & Rajesh Shende & Marc A. Rosen, 2016. "Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle," Energies, MDPI, vol. 9(5), pages 1-15, April.
    3. Lee, Boreum & Kim, Hyunwoo & Lee, Hyunjun & Byun, Manhee & Won, Wangyun & Lim, Hankwon, 2020. "Technical and economic feasibility under uncertainty for methane dry reforming of coke oven gas as simultaneous H2 production and CO2 utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekaterina Matus & Olga Sukhova & Ilyas Ismagilov & Mikhail Kerzhentsev & Olga Stonkus & Zinfer Ismagilov, 2021. "Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion," Energies, MDPI, vol. 14(16), pages 1-16, August.
    2. Vladislav Sadykov, 2023. "Advances in Hydrogen and Syngas Generation," Energies, MDPI, vol. 16(7), pages 1-4, March.
    3. Abdelsalam, Emad & Darwish, Omar & Karajeh, Ola & Almomani, Fares & Darweesh, Dirar & Kiswani, Sanad & Omar, Abdullah & Alkisrawi, Malek, 2022. "A classifier to detect best mode for Solar Chimney Power Plant system," Renewable Energy, Elsevier, vol. 197(C), pages 244-256.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Do, Thai Ngan & Hur, Young Gul & Chung, Hegwon & Kim, Jiyong, 2023. "Potentials and benefit assessment of green fuels from residue gas via gas-to-liquid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    3. Chen, Zong & Zhang, Rongjun & Xia, Guofu & Wu, Yu & Li, Hongwei & Sun, Zhao & Sun, Zhiqiang, 2021. "Vacuum promoted methane decomposition for hydrogen production with carbon separation: Parameter optimization and economic assessment," Energy, Elsevier, vol. 222(C).
    4. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    5. Choe, Changgwon & Cheon, Seunghyun & Gu, Jiwon & Lim, Hankwon, 2022. "Critical aspect of renewable syngas production for power-to-fuel via solid oxide electrolysis: Integrative assessment for potential renewable energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Ouyang, Tiancheng & Xu, Jisong & Qin, Peijia & Cheng, Liang, 2022. "Utilizing flue gas low-grade waste heat and furnace excess heat to produce syngas and sulfuric acid recovery in coal-fired power plant," Energy, Elsevier, vol. 258(C).
    7. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    8. Rahul R. Bhosale, 2020. "Terbium oxide‐based solar thermochemical CO2 splitting cycle: A thermodynamic investigation," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 703-714, August.
    9. Hong Il Choi & Sung-Won Hwang & Jongrae Kim & Byeonghyeok Park & EonSeon Jin & In-Geol Choi & Sang Jun Sim, 2021. "Augmented CO2 tolerance by expressing a single H+-pump enables microalgal valorization of industrial flue gas," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    10. Correa, Diego F. & Beyer, Hawthorne L. & Fargione, Joseph E. & Hill, Jason D. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2019. "Towards the implementation of sustainable biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 250-263.
    11. Lucía Arribas & José González-Aguilar & Manuel Romero, 2018. "Solar-Driven Thermochemical Water-Splitting by Cerium Oxide: Determination of Operational Conditions in a Directly Irradiated Fixed Bed Reactor," Energies, MDPI, vol. 11(9), pages 1-15, September.
    12. Rahul R. Bhosale, 2020. "Solar thermochemical conversion of CO2 via erbium oxide based redox cycle," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 865-874, August.
    13. Massimo Moser & Matteo Pecchi & Thomas Fend, 2019. "Techno-Economic Assessment of Solar Hydrogen Production by Means of Thermo-Chemical Cycles," Energies, MDPI, vol. 12(3), pages 1-17, January.
    14. Behera, Bunushree & Unpaprom, Yuwalee & Ramaraj, Rameshprabu & Maniam, Gaanty Pragas & Govindan, Natanamurugaraj & Paramasivan, Balasubramanian, 2021. "Integrated biomolecular and bioprocess engineering strategies for enhancing the lipid yield from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Choe, Changgwon & Haider, Junaid & Lim, Hankwon, 2023. "Carbon capture and liquefaction from methane steam reforming unit: 4E’s analysis (Energy, Exergy, Economic, and Environmental)," Applied Energy, Elsevier, vol. 332(C).
    16. Paolo Sospiro & Leonardo Nibbi & Marco Ciro Liscio & Maurizio De Lucia, 2021. "Cost–Benefit Analysis of Pumped Hydroelectricity Storage Investment in China," Energies, MDPI, vol. 14(24), pages 1-20, December.
    17. Gao, Yibo & Mao, Yanpeng & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong & Chen, Guifang & Chen, Shouyan, 2020. "Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material," Applied Energy, Elsevier, vol. 279(C).
    18. Ferreira, G.F. & Ríos Pinto, L.F. & Maciel Filho, R. & Fregolente, L.V., 2019. "A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 448-466.
    19. Wu, Wenbo & Tan, Ling & Chang, Haixing & Zhang, Chaofan & Tan, Xuefei & Liao, Qiang & Zhong, Nianbing & Zhang, Xianming & Zhang, Yuanbo & Ho, Shih-Hsin, 2023. "Advancements on process regulation for microalgae-based carbon neutrality and biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    20. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2894-:d:556423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.