IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1341-d332350.html
   My bibliography  Save this article

Finite Element Modeling of Geothermal Source of Heat Pump in Long-Term Operation

Author

Listed:
  • Elżbieta Hałaj

    (AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, 30-059 Krakow, Poland)

  • Leszek Pająk

    (AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, 30-059 Krakow, Poland)

  • Bartosz Papiernik

    (AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, 30-059 Krakow, Poland)

Abstract

Model simulation allows to present the time-varying temperature distribution of the ground source for heat pumps. A system of 25 double U-shape borehole heat exchangers (BHEs) in long-term operation and three scenarios were created. In these scenarios, the difference between balanced and non-balanced energy load was considered as well as the influence of the hydrogeological factors on the temperature of the ground source. The aim of the study was to compare different thermal regimes of BHEs operation and examine the influence of small-scale and short-time thermal energy storage on ground source thermal balance. To present the performance of the system according to geological and hydrogeological factors, a Feflow ® software (MIKE Powered by DHI Software) was used. The temperature for the scenarios was visualized after 10 and 30 years of the system’s operation. In this paper, a case is presented in which waste thermal energy from space cooling applications during summer months was used to upgrade thermal performance of the ground (geothermal) source of a heat pump. The study shows differences in the temperature in the ground around different Borehole Heat Exchangers. The cold plume from the not-balanced energy scenario is the most developed and might influence the future installations in the vicinity. Moreover, seasonal storage can partially overcome the negative influence of the travel of a cold plume. The most exposed to freezing were BHEs located in the core of the cold plumes. Moreover, the influence of the groundwater flow on the thermal recovery of the several BHEs is visible. The proper energy load of the geothermal source heat pump installation is crucial and it can benefit from small-scale storage. After 30 years of operation, the minimum average temperature at 50 m depth in the system with waste heat from space cooling was 2.1 °C higher than in the system without storage and 1.6 °C higher than in the layered model in which storage was not applied.

Suggested Citation

  • Elżbieta Hałaj & Leszek Pająk & Bartosz Papiernik, 2020. "Finite Element Modeling of Geothermal Source of Heat Pump in Long-Term Operation," Energies, MDPI, vol. 13(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1341-:d:332350
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1341/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenting Ma & Moon Keun Kim & Jianli Hao, 2019. "Numerical Simulation Modeling of a GSHP and WSHP System for an Office Building in the Hot Summer and Cold Winter Region of China: A Case Study in Suzhou," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    2. Takeshi Ishihara & Gaurav Shrestha & Shohei Kaneko & Youhei Uchida, 2018. "Analysis of Shallow Subsurface Geological Structures and Ground Effective Thermal Conductivity for the Evaluation of Ground-Source Heat Pump System Installation in the Aizu Basin, Northeast Japan," Energies, MDPI, vol. 11(8), pages 1-14, August.
    3. Choi, Jung Chan & Park, Joonsang & Lee, Seung Rae, 2013. "Numerical evaluation of the effects of groundwater flow on borehole heat exchanger arrays," Renewable Energy, Elsevier, vol. 52(C), pages 230-240.
    4. Mateusz Janiszewski & Enrique Caballero Hernández & Topias Siren & Lauri Uotinen & Ilmo Kukkonen & Mikael Rinne, 2018. "In Situ Experiment and Numerical Model Validation of a Borehole Heat Exchanger in Shallow Hard Crystalline Rock," Energies, MDPI, vol. 11(4), pages 1-21, April.
    5. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    6. Franziska Bockelmann & M. Norbert Fisch, 2019. "It Works—Long-Term Performance Measurement and Optimization of Six Ground Source Heat Pump Systems in Germany," Energies, MDPI, vol. 12(24), pages 1-22, December.
    7. Capozza, Antonio & De Carli, Michele & Zarrella, Angelo, 2013. "Investigations on the influence of aquifers on the ground temperature in ground-source heat pump operation," Applied Energy, Elsevier, vol. 107(C), pages 350-363.
    8. Yong Li & Shibin Geng & Xu Han & Hua Zhang & Fusheng Peng, 2017. "Performance Evaluation of Borehole Heat Exchanger in Multilayered Subsurface," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    9. Ali Tolooiyan & Phil Hemmingway, 2014. "A preliminary study of the effect of groundwater flow on the thermal front created by borehole heat exchangers," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(4), pages 284-295.
    10. Sang Mu Bae & Yujin Nam & Byoung Ohan Shim, 2018. "Feasibility Study of Ground Source Heat Pump System Considering Underground Thermal Properties," Energies, MDPI, vol. 11(7), pages 1-20, July.
    11. Nilsson, Emil & Rohdin, Patrik, 2019. "Performance evaluation of an industrial borehole thermal energy storage (BTES) project – Experiences from the first seven years of operation," Renewable Energy, Elsevier, vol. 143(C), pages 1022-1034.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Mancin & Marco Noro, 2020. "Reversible Heat Pump Coupled with Ground Ice Storage for Annual Air Conditioning: An Energy Analysis," Energies, MDPI, vol. 13(23), pages 1-16, November.
    2. Joanna Piotrowska-Woroniak, 2021. "Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests," Energies, MDPI, vol. 14(9), pages 1-21, April.
    3. Aleksandra Szulc-Wrońska & Barbara Tomaszewska, 2020. "Low Enthalpy Geothermal Resources for Local Sustainable Development: A Case Study in Poland," Energies, MDPI, vol. 13(19), pages 1-20, September.
    4. Yujiao Li & Peng Liu & Wei Wang & Xianmin Ke & Yiwen Jiao & Yitian Liu & Haotian Liang, 2023. "Optimizing the Layout of a Ground Source Heat Pump System with a Groundwater–Thermal Coupling Model," Energies, MDPI, vol. 16(19), pages 1-18, September.
    5. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tye-Gingras, Maxime & Gosselin, Louis, 2014. "Generic ground response functions for ground exchangers in the presence of groundwater flow," Renewable Energy, Elsevier, vol. 72(C), pages 354-366.
    2. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    3. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    4. Gaurav Shrestha & Mayumi Yoshioka & Hikari Fujii & Youhei Uchida, 2020. "Evaluation of Suitable Areas to Introduce a Closed-Loop Ground Source Heat Pump System in the Case of a Standard Japanese Detached Residence," Energies, MDPI, vol. 13(17), pages 1-15, August.
    5. Yong Li & Shibin Geng & Xu Han & Hua Zhang & Fusheng Peng, 2017. "Performance Evaluation of Borehole Heat Exchanger in Multilayered Subsurface," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    6. Ma, Z.D. & Jia, G.S. & Cui, X. & Xia, Z.H. & Zhang, Y.P. & Jin, L.W., 2020. "Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer," Applied Energy, Elsevier, vol. 276(C).
    7. Shibin Geng & Yong Li & Xu Han & Huiliang Lian & Hua Zhang, 2016. "Evaluation of Thermal Anomalies in Multi-Boreholes Field Considering the Effects of Groundwater Flow," Sustainability, MDPI, vol. 8(6), pages 1-19, June.
    8. Alcaraz, Mar & Vives, Luis & Vázquez-Suñé, Enric, 2017. "The T-I-GER method: A graphical alternative to support the design and management of shallow geothermal energy exploitations at the metropolitan scale," Renewable Energy, Elsevier, vol. 109(C), pages 213-221.
    9. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    10. Liu, Xin & Zuo, Yuning & Yin, Zekai & Liang, Chuanzhi & Feng, Guohui & Yang, Xiaodan, 2023. "Research on an evaluation system of the application effect of ground source heat pump systems for green buildings in China," Energy, Elsevier, vol. 262(PA).
    11. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    12. Guo, Y. & Huang, G. & Liu, W.V., 2023. "A new semi-analytical solution addressing varying heat transfer rates for U-shaped vertical borehole heat exchangers in multilayered ground," Energy, Elsevier, vol. 274(C).
    13. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    14. Gang, Wenjie & Wang, Jinbo & Wang, Shengwei, 2014. "Performance analysis of hybrid ground source heat pump systems based on ANN predictive control," Applied Energy, Elsevier, vol. 136(C), pages 1138-1144.
    15. Aizhao Zhou & Xianwen Huang & Wei Wang & Pengming Jiang & Xinwei Li, 2021. "Thermo-Hydraulic Performance of U-Tube Borehole Heat Exchanger with Different Cross-Sections," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    16. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    17. Hirvijoki, Eero & Hirvonen, Janne, 2022. "The potential of intermediate-to-deep geothermal boreholes for seasonal storage of district heat," Renewable Energy, Elsevier, vol. 198(C), pages 825-832.
    18. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kang, Han-byul, 2014. "Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects," Applied Energy, Elsevier, vol. 125(C), pages 165-178.
    19. Linlin Zhang & Zhonghua Shi & Tianhao Yuan, 2020. "Study on the Coupled Heat Transfer Model Based on Groundwater Advection and Axial Heat Conduction for the Double U-Tube Vertical Borehole Heat Exchanger," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    20. Borja Badenes & Miguel Ángel Mateo Pla & Teresa Magraner & Javier Soriano & Javier F. Urchueguía, 2020. "Theoretical and Experimental Cost–Benefit Assessment of Borehole Heat Exchangers (BHEs) According to Working Fluid Flow Rate," Energies, MDPI, vol. 13(18), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1341-:d:332350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.