IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p930-d322664.html
   My bibliography  Save this article

Snapshot of Photovoltaics—February 2020

Author

Listed:
  • Arnulf Jäger-Waldau

    (European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, I-21027 Ispra (VA), Italy)

Abstract

Since the demonstration of the first modern silicon solar cells at Bell Labs in 1954, it took 58 years until the cumulative installed photovoltaic electricity generation capacity had reached 100 GW by the end of 2012. Then, it took another five years to reach an annual installation capacity of over 100 GW in 2017 and close to 120 GW in 2019. As a consequence, the total world-wide installed photovoltaic electricity generation capacity exceeded 635 GW at the end of 2019. Although it witnessed a 20% and 25% decrease in annual installations in 2018 and 2019, respectively, China was again the largest market with 30 GW of annual installations. The number of countries in the club with more than 1 GW annually has increased to 18 countries in 2019. The use of local battery storage systems in solar farms as well as decentralized photovoltaic electricity generation systems combined has again increased, due to the falling storage system costs.

Suggested Citation

  • Arnulf Jäger-Waldau, 2020. "Snapshot of Photovoltaics—February 2020," Energies, MDPI, vol. 13(4), pages 1-8, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:930-:d:322664
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/930/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/930/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jäger-Waldau, Arnulf & Kougias, Ioannis & Taylor, Nigel & Thiel, Christian, 2020. "How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Norasikin Ahmad Ludin & Nurfarhana Alyssa Ahmad Affandi & Kathleen Purvis-Roberts & Azah Ahmad & Mohd Adib Ibrahim & Kamaruzzaman Sopian & Sufian Jusoh, 2021. "Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    3. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    4. Cousse, Julia, 2021. "Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    6. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    7. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    8. Chien, Fengsheng & Hsu, Ching-Chi & Ozturk, Ilhan & Sharif, Arshian & Sadiq, Muhammad, 2022. "The role of renewable energy and urbanization towards greenhouse gas emission in top Asian countries: Evidence from advance panel estimations," Renewable Energy, Elsevier, vol. 186(C), pages 207-216.
    9. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    10. Kuang, Zhonghong & Chen, Qi & Yu, Yang, 2022. "Assessing the CO2-emission risk due to wind-energy uncertainty," Applied Energy, Elsevier, vol. 310(C).
    11. Li, Xiao & Liu, Pan & Feng, Maoyuan & Jordaan, Sarah M. & Cheng, Lei & Ming, Bo & Chen, Jie & Xie, Kang & Liu, Weibo, 2024. "Energy transition paradox: Solar and wind growth can hinder decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Doukas, H. & Arsenopoulos, A. & Lazoglou, M. & Nikas, A. & Flamos, A., 2022. "Wind repowering: Unveiling a hidden asset," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Khan, Feroz & Rapposelli, Agnese, 2024. "Determination of sustainable energy mix to ensure energy security in Italy amidst Russian-Ukraine crises," Renewable Energy, Elsevier, vol. 231(C).
    14. Felix Kattelmann & Jonathan Siegle & Roland Cunha Montenegro & Vera Sehn & Markus Blesl & Ulrich Fahl, 2021. "How to Reach the New Green Deal Targets: Analysing the Necessary Burden Sharing within the EU Using a Multi-Model Approach," Energies, MDPI, vol. 14(23), pages 1-24, November.
    15. Wang, Yubao & Zhen, Junjie, 2025. "Evaluating the economic and environmental impacts of distributed photovoltaic policy: Insights from county-level data in China," Energy Policy, Elsevier, vol. 198(C).
    16. Arkadiusz Świadek & Jadwiga Gorączkowska & Karolina Godzisz, 2022. "Conditions Driving Eco-Innovation in a Catching-Up Country—ICT vs. Industry in Poland," Energies, MDPI, vol. 15(15), pages 1-21, July.
    17. Piotr Olczak & Agnieszka Żelazna & Dominika Matuszewska & Małgorzata Olek, 2021. "The “My Electricity” Program as One of the Ways to Reduce CO 2 Emissions in Poland," Energies, MDPI, vol. 14(22), pages 1-17, November.
    18. Koasidis, Konstantinos & Nikas, Alexandros & Van de Ven, Dirk-Jan & Xexakis, Georgios & Forouli, Aikaterini & Mittal, Shivika & Gambhir, Ajay & Koutsellis, Themistoklis & Doukas, Haris, 2022. "Towards a green recovery in the EU: Aligning further emissions reductions with short- and long-term energy-sector employment gains," Energy Policy, Elsevier, vol. 171(C).
    19. Salim, Daniel Henrique Carneiro & de Sousa Mello, Caio César & Franco, Guilherme Gandra & de Albuquerque Nóbrega, Rodrigo Affonso & de Paula, Eduardo Coutinho & Fonseca, Bráulio Magalhães & Nero, Marc, 2023. "Unveiling Fernando de Noronha Island's photovoltaic potential with unmanned aerial survey and irradiation modeling," Applied Energy, Elsevier, vol. 337(C).
    20. Acosta-Pazmiño, Iván P. & Rivera-Solorio, C.I. & Gijón-Rivera, M., 2021. "Scaling-up the installation of hybrid solar collectors to reduce CO2 emissions in a Mexican industrial sector from now to 2030," Applied Energy, Elsevier, vol. 298(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:930-:d:322664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.