IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p797-d319547.html
   My bibliography  Save this article

Earth-Cooling Air Tunnels for Thermal Power Plants: Initial Design by CFD Modelling

Author

Listed:
  • Eduardo de la Rocha Camba

    (Department of Thermal and Fluid Engineering, University Carlos III of Madrid, Avenida de la Universidad 30, Leganés, 28911 Madrid, Spain)

  • Fontina Petrakopoulou

    (Department of Thermal and Fluid Engineering, University Carlos III of Madrid, Avenida de la Universidad 30, Leganés, 28911 Madrid, Spain)

Abstract

Climate change and the increase of the consumption of energy resources are expected to further strain anticipated water stress scenarios. The operation of existing thermal plants depends greatly on their cooling capacity, for which large amounts of water are withdrawn and consumed. Dry-cooling systems, on the other hand, do not require water, but they are less efficient and more expensive relative to conventional water-based systems, because of their dependency on the ambient temperature. This paper introduces the new idea of replacing water-based cooling systems in thermal power plants with earth-cooling air tunnels. Based on the concept of existing earth-air heat exchangers, the system takes advantage of the low and relatively constant underground temperature for cooling ambient air before it is introduced in the air condenser of the plant. In this work, we present an initial design of such an open-loop system for a 20 MW concentrated solar power plant. A sensitivity study of both geometric and flow parameters is realized using computational fluid dynamics simulations. Under the requirements of the study, we find that a system using a design of pipes with 0.5 m diameter and about 300 m length can be considered a technically viable zero-water alternative to water-cooling technologies.

Suggested Citation

  • Eduardo de la Rocha Camba & Fontina Petrakopoulou, 2020. "Earth-Cooling Air Tunnels for Thermal Power Plants: Initial Design by CFD Modelling," Energies, MDPI, vol. 13(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:797-:d:319547
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/797/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/797/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jennifer Cronin & Gabrial Anandarajah & Olivier Dessens, 2018. "Climate change impacts on the energy system: a review of trends and gaps," Climatic Change, Springer, vol. 151(2), pages 79-93, November.
    2. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2015. "Ground coupled heat exchangers: A review and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 83-92.
    3. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    4. Aresti, Lazaros & Christodoulides, Paul & Florides, Georgios, 2018. "A review of the design aspects of ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 757-773.
    5. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    6. Mathur, Anuj & Priyam, & Mathur, Sanjay & Agrawal, G.D. & Mathur, Jyotirmay, 2017. "Comparative study of straight and spiral earth air tunnel heat exchanger system operated in cooling and heating modes," Renewable Energy, Elsevier, vol. 108(C), pages 474-487.
    7. Petrakopoulou, Fontina & Robinson, Alexander & Loizidou, Maria, 2016. "Simulation and evaluation of a hybrid concentrating-solar and wind power plant for energy autonomy on islands," Renewable Energy, Elsevier, vol. 96(PA), pages 863-871.
    8. Qian Zhou & Naota Hanasaki & Shinichiro Fujimori, 2018. "Economic Consequences of Cooling Water Insufficiency in the Thermal Power Sector under Climate Change Scenarios," Energies, MDPI, vol. 11(10), pages 1-11, October.
    9. Benhammou, Mohammed & Draoui, Belkacem, 2015. "Parametric study on thermal performance of earth-to-air heat exchanger used for cooling of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 348-355.
    10. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    11. Haotian Liu & Justin Weibel & Eckhard Groll, 2017. "Performance Analysis of an Updraft Tower System for Dry Cooling in Large-Scale Power Plants," Energies, MDPI, vol. 10(11), pages 1-23, November.
    12. Lu Lin & Yongqin David Chen, 2017. "Evaluation of Future Water Use for Electricity Generation under Different Energy Development Scenarios in China," Sustainability, MDPI, vol. 10(1), pages 1-16, December.
    13. Aiko Endo & Kimberly Burnett & Pedcris M. Orencio & Terukazu Kumazawa & Christopher Wada & Akira Ishii & Izumi Tsurita & Makoto Taniguchi, 2015. "Methods of the Water-Energy-Food Nexus," Working Papers 2015-12, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    14. S. W. D. Turner & N. Voisin & J. Fazio & D. Hua & M. Jourabchi, 2019. "Compound climate events transform electrical power shortfall risk in the Pacific Northwest," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    15. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    2. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    3. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    4. Liu, Zhengxuan & Yu, Zhun (Jerry) & Yang, Tingting & Roccamena, Letizia & Sun, Pengcheng & Li, Shuisheng & Zhang, Guoqiang & El Mankibi, Mohamed, 2019. "Numerical modeling and parametric study of a vertical earth-to-air heat exchanger system," Energy, Elsevier, vol. 172(C), pages 220-231.
    5. Cuny, Mathias & Lapertot, Arnaud & Lin, Jian & Kadoch, Benjamin & Le Metayer, Olivier, 2020. "Multi-criteria optimization of an earth-air heat exchanger for different French climates," Renewable Energy, Elsevier, vol. 157(C), pages 342-352.
    6. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    7. Lekhal, Mohammed Cherif & Benzaama, Mohammed-Hichem & Kindinis, Andrea & Mokhtari, Abderahmane-Mejedoub & Belarbi, Rafik, 2021. "Effect of geo-climatic conditions and pipe material on heating performance of earth-air heat exchangers," Renewable Energy, Elsevier, vol. 163(C), pages 22-40.
    8. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    9. Elombo Motoula, Smaël Magloire & Gomat, Landry Jean Pierre & Lin, Jian & M’passi Mabiala, Bernard, 2022. "Continuum approach to evaluate humidity transportation by an Earth to Air Energy Exchanger," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "The Energy Performances of a Ground-to-Air Heat Exchanger: A Comparison Among Köppen Climatic Areas," Energies, MDPI, vol. 13(11), pages 1-25, June.
    11. Amanowicz, Łukasz, 2018. "Influence of geometrical parameters on the flow characteristics of multi-pipe earth-to-air heat exchangers – experimental and CFD investigations," Applied Energy, Elsevier, vol. 226(C), pages 849-861.
    12. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Adriana Greco & Claudia Masselli, 2020. "The Optimization of the Thermal Performances of an Earth to Air Heat Exchanger for an Air Conditioning System: A Numerical Study," Energies, MDPI, vol. 13(23), pages 1-25, December.
    14. Tahery, Danial & Roshandel, Ramin & Avami, Akram, 2021. "An integrated dynamic model for evaluating the influence of ground to air heat transfer system on heating, cooling and CO2 supply in Greenhouses: Considering crop transpiration," Renewable Energy, Elsevier, vol. 173(C), pages 42-56.
    15. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
    17. Gomat, Landry Jean Pierre & Elombo Motoula, Smaël Magloire & M’Passi-Mabiala, Bernard, 2020. "An analytical method to evaluate the impact of vertical part of an earth-air heat exchanger on the whole system," Renewable Energy, Elsevier, vol. 162(C), pages 1005-1016.
    18. Angelo Zarrella & Roberto Zecchin & Philippe Pasquier & Diego Guzzon & Enrico Prataviera & Jacopo Vivian & Michele De Carli & Giuseppe Emmi, 2020. "Analysis of Retrofit Solutions of a Ground Source Heat Pump System: An Italian Case Study," Energies, MDPI, vol. 13(21), pages 1-19, October.
    19. Ioan Sarbu & Calin Sebarchievici, 2020. "Exploratory Research to Improve Energy-Efficiency of a Ground-Coupled Heat Pump Utilizing an Automatic Control Device of Circulation Pump Speed," Energies, MDPI, vol. 13(19), pages 1-19, September.
    20. Maoz & Saddam Ali & Noor Muhammad & Ahmad Amin & Mohammad Sohaib & Abdul Basit & Tanvir Ahmad, 2019. "Parametric Optimization of Earth to Air Heat Exchanger Using Response Surface Method," Sustainability, MDPI, vol. 11(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:797-:d:319547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.