IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6260-d452287.html
   My bibliography  Save this article

Fuzzy Complex Proportional Assessment Applied in Location Selection for Installation of Photovoltaic Plants

Author

Listed:
  • Paulo Antônio Xavier Furtado

    (Production Engineering Department, Federal University of Technology-Paraná (UTFPR), Ponta Grossa 84016-210, Brazil)

  • Antônio Vanderley Herrero Sola

    (Production Engineering Department, Federal University of Technology-Paraná (UTFPR), Ponta Grossa 84016-210, Brazil)

Abstract

This article proposes the application of a multi-criteria decision-making method based on fuzzy complex proportional assessment (COPRAS-F), applying business sustainability criteria, to rank alternative sites for the installation of photovoltaic plants, as selected from a geographic suitability index map of vast and heterogeneous regions in Southern Brazil, obtained from a geographic information system. As a key feature, the methodology serves the interests of stakeholders during decision-making meetings in a personalized manner, eliminating the need for consensus to overcome conflicts and antagonistic positions, allowing them to maintain a strictly professional view and to communicate in business language. The results indicate that the best location from a geographical viewpoint may not be the best location from a business viewpoint.

Suggested Citation

  • Paulo Antônio Xavier Furtado & Antônio Vanderley Herrero Sola, 2020. "Fuzzy Complex Proportional Assessment Applied in Location Selection for Installation of Photovoltaic Plants," Energies, MDPI, vol. 13(23), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6260-:d:452287
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janke, Jason R., 2010. "Multicriteria GIS modeling of wind and solar farms in Colorado," Renewable Energy, Elsevier, vol. 35(10), pages 2228-2234.
    2. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    3. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    4. Maxim, Alexandru, 2014. "Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis," Energy Policy, Elsevier, vol. 65(C), pages 284-297.
    5. Zhang, Ling & Zhou, Peng & Newton, Sidney & Fang, Jian-xin & Zhou, De-qun & Zhang, Lu-ping, 2015. "Evaluating clean energy alternatives for Jiangsu, China: An improved multi-criteria decision making method," Energy, Elsevier, vol. 90(P1), pages 953-964.
    6. Tsoutsos, Theocharis & Drandaki, Maria & Frantzeskaki, Niki & Iosifidis, Eleftherios & Kiosses, Ioannis, 2009. "Sustainable energy planning by using multi-criteria analysis application in the island of Crete," Energy Policy, Elsevier, vol. 37(5), pages 1587-1600, May.
    7. Charabi, Yassine & Gastli, Adel, 2011. "PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation," Renewable Energy, Elsevier, vol. 36(9), pages 2554-2561.
    8. Mourmouris, J.C. & Potolias, C., 2013. "A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece," Energy Policy, Elsevier, vol. 52(C), pages 522-530.
    9. Tomosk, Steve & Haysom, Joan E. & Hinzer, Karin & Schriemer, Henry & Wright, David, 2017. "Mapping the geographic distribution of the economic viability of photovoltaic load displacement projects in SW USA," Renewable Energy, Elsevier, vol. 107(C), pages 101-112.
    10. Rovere, Emilio Lebre La & Soares, Jeferson Borghetti & Oliveira, Luciano Basto & Lauria, Tatiana, 2010. "Sustainable expansion of electricity sector: Sustainability indicators as an instrument to support decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 422-429, January.
    11. Rojas-Zerpa, Juan C. & Yusta, Jose M., 2015. "Application of multicriteria decision methods for electric supply planning in rural and remote areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 557-571.
    12. Grossmann, Wolf D. & Grossmann, Iris & Steininger, Karl W., 2014. "Solar electricity generation across large geographic areas, Part II: A Pan-American energy system based on solar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 983-993.
    13. Klein, Sharon J.W. & Whalley, Stephanie, 2015. "Comparing the sustainability of U.S. electricity options through multi-criteria decision analysis," Energy Policy, Elsevier, vol. 79(C), pages 127-149.
    14. Haddad, Brahim & Liazid, Abdelkrim & Ferreira, Paula, 2017. "A multi-criteria approach to rank renewables for the Algerian electricity system," Renewable Energy, Elsevier, vol. 107(C), pages 462-472.
    15. Onat, Nevzat & Bayar, Haydar, 2010. "The sustainability indicators of power production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3108-3115, December.
    16. Perpiña Castillo, Carolina & Batista e Silva, Filipe & Lavalle, Carlo, 2016. "An assessment of the regional potential for solar power generation in EU-28," Energy Policy, Elsevier, vol. 88(C), pages 86-99.
    17. Zoghi, Mahmood & Houshang Ehsani, Amir & Sadat, Mahdis & javad Amiri, Mohammad & Karimi, Sepideh, 2017. "Optimization solar site selection by fuzzy logic model and weighted linear combination method in arid and semi-arid region: A case study Isfahan-IRAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 986-996.
    18. Alami Merrouni, Ahmed & Elwali Elalaoui, Fakhreddine & Mezrhab, Ahmed & Mezrhab, Abdelhamid & Ghennioui, Abdellatif, 2018. "Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco," Renewable Energy, Elsevier, vol. 119(C), pages 863-873.
    19. Sabo, Mahmoud Lurwan & Mariun, Norman & Hizam, Hashim & Mohd Radzi, Mohd Amran & Zakaria, Azmi, 2016. "Spatial energy predictions from large-scale photovoltaic power plants located in optimal sites and connected to a smart grid in Peninsular Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 79-94.
    20. Stein, Eric W., 2013. "A comprehensive multi-criteria model to rank electric energy production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 640-654.
    21. Brewer, Justin & Ames, Daniel P. & Solan, David & Lee, Randy & Carlisle, Juliet, 2015. "Using GIS analytics and social preference data to evaluate utility-scale solar power site suitability," Renewable Energy, Elsevier, vol. 81(C), pages 825-836.
    22. Mulliner, Emma & Malys, Naglis & Maliene, Vida, 2016. "Comparative analysis of MCDM methods for the assessment of sustainable housing affordability," Omega, Elsevier, vol. 59(PB), pages 146-156.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    2. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    4. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon’s entropy fuzzy multi-criteria decision approach," Renewable Energy, Elsevier, vol. 171(C), pages 58-74.
    5. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    6. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    7. Strantzali, Eleni & Aravossis, Konstantinos & Livanos, Georgios A., 2017. "Evaluation of future sustainable electricity generation alternatives: The case of a Greek island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 775-787.
    8. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    9. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    10. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    11. Noorollahi, Younes & Ghenaatpisheh Senani, Ali & Fadaei, Ahmad & Simaee, Mobina & Moltames, Rahim, 2022. "A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 186(C), pages 89-104.
    12. Rivero-Iglesias, Jose M. & Puente, Javier & Fernandez, Isabel & León, Omar, 2023. "Integrated model for the assessment of power generation alternatives through analytic hierarchy process and a fuzzy inference system. Case study of Spain," Renewable Energy, Elsevier, vol. 211(C), pages 563-581.
    13. Colla, Martin & Ioannou, Anastasia & Falcone, Gioia, 2020. "Critical review of competitiveness indicators for energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    14. Kim, Byungil & Han, SangUk & Heo, Jae & Jung, Jaehoon, 2020. "Proof-of-concept of a two-stage approach for selecting suitable slopes on a highway network for solar photovoltaic systems: A case study in South Korea," Renewable Energy, Elsevier, vol. 151(C), pages 366-377.
    15. Aly, Ahmed & Jensen, Steen Solvang & Pedersen, Anders Branth, 2017. "Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis," Renewable Energy, Elsevier, vol. 113(C), pages 159-175.
    16. Hottenroth, H. & Sutardhio, C. & Weidlich, A. & Tietze, I. & Simon, S. & Hauser, W. & Naegler, T. & Becker, L. & Buchgeister, J. & Junne, T. & Lehr, U. & Scheel, O. & Schmidt-Scheele, R. & Ulrich, P. , 2022. "Beyond climate change. Multi-attribute decision making for a sustainability assessment of energy system transformation pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    18. Heo, Jae & Jung, Jaehoon & Kim, Byungil & Han, SangUk, 2020. "Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions," Applied Energy, Elsevier, vol. 262(C).
    19. Kwak, Yoonshin & Deal, Brian & Heavisides, Tom, 2021. "A large scale multi criteria suitability analysis for identifying solar development potential: A decision support approach for the state of Illinois, USA," Renewable Energy, Elsevier, vol. 177(C), pages 554-567.
    20. Nili, Maryam & Seyedhosseini, Seyed Mohammad & Jabalameli, Mohammad Saeed & Dehghani, Ehsan, 2021. "A multi-objective optimization model to sustainable closed-loop solar photovoltaic supply chain network design: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6260-:d:452287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.