IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5957-d445307.html
   My bibliography  Save this article

Fast Power Emulation Approach to the Operation of Photovoltaic Power Plants Made of Different Module Technologies

Author

Listed:
  • Denis Pelin

    (Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia)

  • Matej Žnidarec

    (Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia)

  • Damir Šljivac

    (Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia)

  • Andrej Brandis

    (Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia)

Abstract

This paper gives a comprehensive approach to the emulation of photovoltaic (PV) plants made of different module technologies as well as varying peak power through the advanced fast PV power emulation technique. Even though PVs are recognized as a technology for CO 2 emissions mitigation, the proposed emulation technique provides the opportunity to replicate PV plant operation without a carbon footprint because of its working principle. The process of PV power plant emulation consists of several stages which are described in detail. An algorithm for determining PV power plant configuration based on the technical characteristics of the PV emulation system equipment is developed and presented, as well as an algorithm for preparing data on the current–voltage ( i–v ) characteristics used as input data into programmable sources that mimic the power plant PV array. A case study of a single day operation of PV power plants made of two different topologies and technologies was carried out with the fast PV power emulation approach and the results are evaluated and presented.

Suggested Citation

  • Denis Pelin & Matej Žnidarec & Damir Šljivac & Andrej Brandis, 2020. "Fast Power Emulation Approach to the Operation of Photovoltaic Power Plants Made of Different Module Technologies," Energies, MDPI, vol. 13(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5957-:d:445307
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5957/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5957/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayop, Razman & Tan, Chee Wei, 2017. "A comprehensive review on photovoltaic emulator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 430-452.
    2. Wenjie Liu & Kamran Ali Khan Niazi & Tamas Kerekes & Yongheng Yang, 2019. "A Review on Transformerless Step-Up Single-Phase Inverters with Different DC-Link Voltage for Photovoltaic Applications," Energies, MDPI, vol. 12(19), pages 1-17, September.
    3. Kamran Zeb & Imran Khan & Waqar Uddin & Muhammad Adil Khan & P. Sathishkumar & Tiago Davi Curi Busarello & Iftikhar Ahmad & H. J. Kim, 2018. "A Review on Recent Advances and Future Trends of Transformerless Inverter Structures for Single-Phase Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 11(8), pages 1-34, July.
    4. Vincenzo Stornelli & Mirco Muttillo & Tullio de Rubeis & Iole Nardi, 2019. "A New Simplified Five-Parameter Estimation Method for Single-Diode Model of Photovoltaic Panels," Energies, MDPI, vol. 12(22), pages 1-20, November.
    5. Kim, Younghyun & Lee, Woojoo & Pedram, Massoud & Chang, Naehyuck, 2013. "Dual-mode power regulator for photovoltaic module emulation," Applied Energy, Elsevier, vol. 101(C), pages 730-739.
    6. Ram, J. Prasanth & Manghani, Himanshu & Pillai, Dhanup S. & Babu, T. Sudhakar & Miyatake, Masafumi & Rajasekar, N., 2018. "Analysis on solar PV emulators: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 149-160.
    7. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    8. Barghi Latran, Mohammad & Teke, Ahmet, 2015. "Investigation of multilevel multifunctional grid connected inverter topologies and control strategies used in photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 361-376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson Rodrigo Piccini & Geraldo Caixeta Guimarães & Arthur Costa de Souza & Ana Maria Denardi, 2021. "Implementation of a Photovoltaic Inverter with Modified Automatic Voltage Regulator Control Designed to Mitigate Momentary Voltage Dip," Energies, MDPI, vol. 14(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Przemysław Korasiak & Janusz Jaglarz, 2022. "A New Photovoltaic Emulator Designed for Testing Low-Power Inverters Connected to the LV Grid," Energies, MDPI, vol. 15(7), pages 1-19, April.
    2. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    3. Chen, Zhicong & Yu, Hui & Luo, Linlu & Wu, Lijun & Zheng, Qiao & Wu, Zhenhui & Cheng, Shuying & Lin, Peijie, 2021. "Rapid and accurate modeling of PV modules based on extreme learning machine and large datasets of I-V curves," Applied Energy, Elsevier, vol. 292(C).
    4. Ayop, Razman & Tan, Chee Wei, 2017. "A comprehensive review on photovoltaic emulator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 430-452.
    5. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.
    6. Liu, Yun & Heidari, Ali Asghar & Ye, Xiaojia & Liang, Guoxi & Chen, Huiling & He, Caitou, 2021. "Boosting slime mould algorithm for parameter identification of photovoltaic models," Energy, Elsevier, vol. 234(C).
    7. Bushra Shakir Mahmood & Nazar K. Hussein & Mansourah Aljohani & Mohammed Qaraad, 2023. "A Modified Gradient Search Rule Based on the Quasi-Newton Method and a New Local Search Technique to Improve the Gradient-Based Algorithm: Solar Photovoltaic Parameter Extraction," Mathematics, MDPI, vol. 11(19), pages 1-40, October.
    8. Muhammad Yasir Ali Khan & Haoming Liu & Zhihao Yang & Xiaoling Yuan, 2020. "A Comprehensive Review on Grid Connected Photovoltaic Inverters, Their Modulation Techniques, and Control Strategies," Energies, MDPI, vol. 13(16), pages 1-40, August.
    9. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    10. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    11. Gupta, Akhil, 2022. "Power quality evaluation of photovoltaic grid interfaced cascaded H-bridge nine-level multilevel inverter systems using D-STATCOM and UPQC," Energy, Elsevier, vol. 238(PB).
    12. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    13. Chatterjee, Shantanu & Kumar, Prashant & Chatterjee, Saibal, 2018. "A techno-commercial review on grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2371-2397.
    14. M׳boungui, G. & Adendorff, K. & Naidoo, R. & Jimoh, A.A. & Okojie, D.E., 2015. "A hybrid piezoelectric micro-power generator for use in low power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1136-1144.
    15. Yu, Jinna & Tang, Yuk Ming & Chau, Ka Yin & Nazar, Raima & Ali, Sajid & Iqbal, Wasim, 2022. "Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation," Renewable Energy, Elsevier, vol. 182(C), pages 216-226.
    16. Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
    17. Vavilapalli, Sridhar & Umashankar, S. & Sanjeevikumar, P. & Ramachandaramurthy, Vigna K. & Mihet-Popa, Lucian & Fedák, Viliam, 2018. "Three-stage control architecture for cascaded H-Bridge inverters in large-scale PV systems – Real time simulation validation," Applied Energy, Elsevier, vol. 229(C), pages 1111-1127.
    18. Muttqi, Kashem M. & Aghaei, Jamshid & Askarpour, Mohammad & Ganapathy, Velappa, 2017. "Minimizing the steady-state impediments to solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1329-1345.
    19. Carlos Cárdenas-Bravo & Rodrigo Barraza & Antonio Sánchez-Squella & Patricio Valdivia-Lefort & Federico Castillo-Burns, 2021. "Estimation of Single-Diode Photovoltaic Model Using the Differential Evolution Algorithm with Adaptive Boundaries," Energies, MDPI, vol. 14(13), pages 1-24, June.
    20. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5957-:d:445307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.