IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4271-d285126.html
   My bibliography  Save this article

A New Simplified Five-Parameter Estimation Method for Single-Diode Model of Photovoltaic Panels

Author

Listed:
  • Vincenzo Stornelli

    (Department of Industrial and Information Engineering and Economics (DIIIE), University of L’Aquila, Piazzale Pontieri 1, Monteluco di Roio, I 67100, 67100 L’Aquila, Italy)

  • Mirco Muttillo

    (Department of Industrial and Information Engineering and Economics (DIIIE), University of L’Aquila, Piazzale Pontieri 1, Monteluco di Roio, I 67100, 67100 L’Aquila, Italy)

  • Tullio de Rubeis

    (Department of Industrial and Information Engineering and Economics (DIIIE), University of L’Aquila, Piazzale Pontieri 1, Monteluco di Roio, I 67100, 67100 L’Aquila, Italy)

  • Iole Nardi

    (Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile (ENEA), 00123 S.M. Di Galeria, 00100 Rome, Italy)

Abstract

This work proposes a new simplified five-parameter estimation method for a single-diode model of photovoltaic panels. The method, based on an iterative algorithm, is able to estimate the parameter of the electrical single-diode model from the panel’s datasheet. Two iterative steps are used to estimate the five parameters starting from data provided by the manufacturer (nameplate values or I–V curves). The first step permits finding the optimal value of the diode ideality factor A , and the second step allows the calculation of the R p value to improve the accuracy. A model that takes into account variations in temperature and solar irradiance has been used to validate the behavior of the output parameters. Compared to other estimation work, the proposed method shows the best result in the standard test condition (STC) and with a variable solar irradiance. Indeed, the optimization of the A , R s , and R p parameters allows guaranteeing the minimum error between I–V curves obtained from method and datasheet.

Suggested Citation

  • Vincenzo Stornelli & Mirco Muttillo & Tullio de Rubeis & Iole Nardi, 2019. "A New Simplified Five-Parameter Estimation Method for Single-Diode Model of Photovoltaic Panels," Energies, MDPI, vol. 12(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4271-:d:285126
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lineykin, Simon & Averbukh, Moshe & Kuperman, Alon, 2014. "An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 282-289.
    2. Bana, Sangram & Saini, R.P., 2017. "Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints," Renewable Energy, Elsevier, vol. 101(C), pages 1299-1310.
    3. Orioli, Aldo & Di Gangi, Alessandra, 2019. "A procedure to evaluate the seven parameters of the two-diode model for photovoltaic modules," Renewable Energy, Elsevier, vol. 139(C), pages 582-599.
    4. Orioli, Aldo & Di Gangi, Alessandra, 2013. "A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data," Applied Energy, Elsevier, vol. 102(C), pages 1160-1177.
    5. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    6. Khanna, Vandana & Das, B.K. & Bisht, Dinesh & Vandana, & Singh, P.K., 2015. "A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm," Renewable Energy, Elsevier, vol. 78(C), pages 105-113.
    7. Ali F. Murtaza & Umer Munir & Marcello Chiaberge & Paolo Di Leo & Filippo Spertino, 2018. "Variable Parameters for a Single Exponential Model of Photovoltaic Modules in Crystalline-Silicon," Energies, MDPI, vol. 11(8), pages 1-14, August.
    8. Bastidas-Rodriguez, J.D. & Petrone, G. & Ramos-Paja, C.A. & Spagnuolo, G., 2017. "A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 38-54.
    9. Carrero, C. & Amador, J. & Arnaltes, S., 2007. "A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances," Renewable Energy, Elsevier, vol. 32(15), pages 2579-2589.
    10. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    11. Oliva, Diego & Abd El Aziz, Mohamed & Ella Hassanien, Aboul, 2017. "Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm," Applied Energy, Elsevier, vol. 200(C), pages 141-154.
    12. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    13. Li, Xingshuo & Wen, Huiqing & Hu, Yihua & Jiang, Lin, 2019. "A novel beta parameter based fuzzy-logic controller for photovoltaic MPPT application," Renewable Energy, Elsevier, vol. 130(C), pages 416-427.
    14. Silvano Vergura, 2016. "A Complete and Simplified Datasheet-Based Model of PV Cells in Variable Environmental Conditions for Circuit Simulation," Energies, MDPI, vol. 9(5), pages 1-12, April.
    15. Lukač, Niko & Žlaus, Danijel & Seme, Sebastijan & Žalik, Borut & Štumberger, Gorazd, 2013. "Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data," Applied Energy, Elsevier, vol. 102(C), pages 803-812.
    16. Alaaeddin, M.H. & Sapuan, S.M. & Zuhri, M.Y.M. & Zainudin, E.S. & AL- Oqla, Faris M., 2019. "Photovoltaic applications: Status and manufacturing prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 318-332.
    17. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    18. Rhouma, Mohamed B.H. & Gastli, Adel & Ben Brahim, Lazhar & Touati, Farid & Benammar, Mohieddine, 2017. "A simple method for extracting the parameters of the PV cell single-diode model," Renewable Energy, Elsevier, vol. 113(C), pages 885-894.
    19. Muhsen, Dhiaa Halboot & Ghazali, Abu Bakar & Khatib, Tamer & Abed, Issa Ahmed, 2016. "A comparative study of evolutionary algorithms and adapting control parameters for estimating the parameters of a single-diode photovoltaic module's model," Renewable Energy, Elsevier, vol. 96(PA), pages 377-389.
    20. Ayang, Albert & Wamkeue, René & Ouhrouche, Mohand & Djongyang, Noël & Essiane Salomé, Ndjakomo & Pombe, Joseph Kessel & Ekemb, Gabriel, 2019. "Maximum likelihood parameters estimation of single-diode model of photovoltaic generator," Renewable Energy, Elsevier, vol. 130(C), pages 111-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bushra Shakir Mahmood & Nazar K. Hussein & Mansourah Aljohani & Mohammed Qaraad, 2023. "A Modified Gradient Search Rule Based on the Quasi-Newton Method and a New Local Search Technique to Improve the Gradient-Based Algorithm: Solar Photovoltaic Parameter Extraction," Mathematics, MDPI, vol. 11(19), pages 1-40, October.
    2. Denis Pelin & Matej Žnidarec & Damir Šljivac & Andrej Brandis, 2020. "Fast Power Emulation Approach to the Operation of Photovoltaic Power Plants Made of Different Module Technologies," Energies, MDPI, vol. 13(22), pages 1-17, November.
    3. Chao-Ming Huang & Shin-Ju Chen & Sung-Pei Yang, 2022. "A Parameter Estimation Method for a Photovoltaic Power Generation System Based on a Two-Diode Model," Energies, MDPI, vol. 15(4), pages 1-16, February.
    4. Liu, Yun & Heidari, Ali Asghar & Ye, Xiaojia & Liang, Guoxi & Chen, Huiling & He, Caitou, 2021. "Boosting slime mould algorithm for parameter identification of photovoltaic models," Energy, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    2. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Li, Chenxi & Yang, Yongheng & Spataru, Sergiu & Zhang, Kanjian & Wei, Haikun, 2021. "A robust parametrization method of photovoltaic modules for enhancing one-diode model accuracy under varying operating conditions," Renewable Energy, Elsevier, vol. 168(C), pages 764-778.
    4. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    5. Ridha, Hussein Mohammed & Hizam, Hashim & Gomes, Chandima & Heidari, Ali Asghar & Chen, Huiling & Ahmadipour, Masoud & Muhsen, Dhiaa Halboot & Alghrairi, Mokhalad, 2021. "Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method," Energy, Elsevier, vol. 224(C).
    6. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    7. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    8. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    9. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    10. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2019. "Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm," Applied Energy, Elsevier, vol. 250(C), pages 109-117.
    11. Long, Wen & Jiao, Jianjun & Liang, Ximing & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2022. "Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm," Energy, Elsevier, vol. 249(C).
    12. Yousri, Dalia & Thanikanti, Sudhakar Babu & Allam, Dalia & Ramachandaramurthy, Vigna K. & Eteiba, M.B., 2020. "Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters," Energy, Elsevier, vol. 195(C).
    13. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    14. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    15. Peñaranda Chenche, Luz Elena & Hernandez Mendoza, Oscar Saul & Bandarra Filho, Enio Pedone, 2018. "Comparison of four methods for parameter estimation of mono- and multi-junction photovoltaic devices using experimental data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2823-2838.
    16. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    17. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.
    18. Guojiang Xiong & Jing Zhang & Dongyuan Shi & Xufeng Yuan, 2019. "Application of Supply-Demand-Based Optimization for Parameter Extraction of Solar Photovoltaic Models," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    19. Khan, Firoz & Al-Ahmed, Amir & Al-Sulaiman, Fahad A., 2021. "Critical analysis of the limitations and validity of the assumptions with the analytical methods commonly used to determine the photovoltaic cell parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    20. Mostafa Elshahed & Ali M. El-Rifaie & Mohamed A. Tolba & Ahmed Ginidi & Abdullah Shaheen & Shazly A. Mohamed, 2022. "An Innovative Hunter-Prey-Based Optimization for Electrically Based Single-, Double-, and Triple-Diode Models of Solar Photovoltaic Systems," Mathematics, MDPI, vol. 10(23), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4271-:d:285126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.