IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5937-d444851.html
   My bibliography  Save this article

Study and Simulation of a Wind Hydro Isolated Microgrid

Author

Listed:
  • Rafael Sebastián

    (Departamento de Ingeniería Eléctrica, Electrónica y de Control, ETSII UNED, 28040 Madrid, Spain)

  • Antonio Nevado

    (Departamento de Ingeniería Eléctrica, Electrónica y de Control, ETSII UNED, 28040 Madrid, Spain)

Abstract

Isolated microgrids are microgrids which operate autonomously. This paper presents an isolated microgrid which combines a Hydraulic Turbine Generator (HTG) with a Wind Turbine Generator (WTG) to supply consumers forming a Wind Hydro Isolated Microgrid (WHIM). The WHIM includes a Dump Load (DL) to dissipate the active power excess. The WHIM has been modeled and its operation has been simulated in two modes: Wind-Hydro (WH), where both HTG and WTG supply power, and Wind-Only (WO) mode, where the WTG is the active power supplier and the HTG keeps connected to the grid with null power to generate the grid voltage. In WO, a fast frequency regulation is achieved by means of a controller which commands the DL to consume the WTG power excess. Additionally, the simulation of the mode transition from WO to WH, which is triggered by a system active power deficit in WO mode, is shown. A kick starting system designed to speed up the HTG power production improves the transient from WO to WH mode change. Finally, the simulations in WH mode show the interaction between the HTG and WTG. The two controls proposed have been proved effective and the simulations show a good WHIM dynamic performance.

Suggested Citation

  • Rafael Sebastián & Antonio Nevado, 2020. "Study and Simulation of a Wind Hydro Isolated Microgrid," Energies, MDPI, vol. 13(22), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5937-:d:444851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5937/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5937/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamad, Hasmaini & Mokhlis, Hazlie & Bakar, Ab Halim Abu & Ping, Hew Wooi, 2011. "A review on islanding operation and control for distribution network connected with small hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3952-3962.
    2. Tiago Lukasievicz & Ricardo Oliveira & César Torrico, 2018. "A Control Approach and Supplementary Controllers for a Stand-Alone System with Predominance of Wind Generation," Energies, MDPI, vol. 11(2), pages 1-17, February.
    3. Basak, Prasenjit & Chowdhury, S. & Halder nee Dey, S. & Chowdhury, S.P., 2012. "A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5545-5556.
    4. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    5. José Ignacio Sarasúa & Guillermo Martínez-Lucas & Carlos A. Platero & José Ángel Sánchez-Fernández, 2018. "Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System," Energies, MDPI, vol. 11(11), pages 1-17, October.
    6. Sebastián, R. & Peña Alzola, R., 2012. "Flywheel energy storage systems: Review and simulation for an isolated wind power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6803-6813.
    7. Platero, C.A. & Nicolet, C. & Sánchez, J.A. & Kawkabani, B., 2014. "Increasing wind power penetration in autonomous power systems through no-flow operation of Pelton turbines," Renewable Energy, Elsevier, vol. 68(C), pages 515-523.
    8. Francisco Briongos & Carlos A. Platero & José A. Sánchez-Fernández & Christophe Nicolet, 2020. "Evaluation of the Operating Efficiency of a Hybrid Wind–Hydro Powerplant," Sustainability, MDPI, vol. 12(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Sebastián, 2022. "Improved Operation and Stability of a Wind-Hydro Microgrid by Means of a Li-Ion Battery Energy Storage," Energies, MDPI, vol. 15(23), pages 1-16, December.
    2. Rafael Sebastián, 2022. "Modeling, Simulation and Control of Wind Diesel Power Systems," Energies, MDPI, vol. 15(5), pages 1-2, February.
    3. Rafael Sebastián, 2021. "Review on Dynamic Simulation of Wind Diesel Isolated Microgrids," Energies, MDPI, vol. 14(7), pages 1-17, March.
    4. Oksana Marinina & Anna Nechitailo & Gennady Stroykov & Anna Tsvetkova & Ekaterina Reshneva & Liudmila Turovskaya, 2023. "Technical and Economic Assessment of Energy Efficiency of Electrification of Hydrocarbon Production Facilities in Underdeveloped Areas," Sustainability, MDPI, vol. 15(12), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Sebastián, 2021. "Review on Dynamic Simulation of Wind Diesel Isolated Microgrids," Energies, MDPI, vol. 14(7), pages 1-17, March.
    2. Rafael Sebastián, 2022. "Improved Operation and Stability of a Wind-Hydro Microgrid by Means of a Li-Ion Battery Energy Storage," Energies, MDPI, vol. 15(23), pages 1-16, December.
    3. Capik, Mehmet & Osman Yılmaz, Ali & Cavusoglu, İbrahim, 2012. "Hydropower for sustainable energy development in Turkey: The small hydropower case of the Eastern Black Sea Region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6160-6172.
    4. Mansouri, M.Mahdi & Nayeripour, Majid & Negnevitsky, Michael, 2016. "Internal electrical protection of wind turbine with doubly fed induction generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 840-855.
    5. Rafael Sebastián & Rafael Peña-Alzola, 2020. "Flywheel Energy Storage and Dump Load to Control the Active Power Excess in a Wind Diesel Power System," Energies, MDPI, vol. 13(8), pages 1-15, April.
    6. Francisco Briongos & Carlos A. Platero & José A. Sánchez-Fernández & Christophe Nicolet, 2020. "Evaluation of the Operating Efficiency of a Hybrid Wind–Hydro Powerplant," Sustainability, MDPI, vol. 12(2), pages 1-16, January.
    7. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
    8. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    9. Joe Butchers & Shaun Benzon & Sam Williamson & Julian Booker & George Aggidis, 2021. "A Rationalised CFD Design Methodology for Turgo Turbines to Enable Local Manufacture in the Global South," Energies, MDPI, vol. 14(19), pages 1-23, October.
    10. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    11. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    12. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    13. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    14. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    15. Bui, Duong Minh & Chen, Shi-Lin & Lien, Keng-Yu & Chang, Yung-Ruei & Lee, Yih-Der & Jiang, Jheng-Lun, 2017. "Investigation on transient behaviours of a uni-grounded low-voltage AC microgrid and evaluation on its available fault protection methods: Review and proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1417-1452.
    16. Elgammi, Moutaz & Hamad, Abduljawad Ashour, 2022. "A feasibility study of operating a low static pressure head micro pelton turbine based on water hammer phenomenon," Renewable Energy, Elsevier, vol. 195(C), pages 1-16.
    17. Ram Adhikari & David Wood, 2018. "The Design of High Efficiency Crossflow Hydro Turbines: A Review and Extension," Energies, MDPI, vol. 11(2), pages 1-18, January.
    18. Kahraman, Gökhan & Yücel, Halit Lütfi & Öztop, Hakan F., 2009. "Evaluation of energy efficiency using thermodynamics analysis in a hydropower plant: A case study," Renewable Energy, Elsevier, vol. 34(6), pages 1458-1465.
    19. Sotoude Haghighi, M.H. & Mirghavami, S.M. & Chini, S.F. & Riasi, A., 2019. "Developing a method to design and simulation of a very low head axial turbine with adjustable rotor blades," Renewable Energy, Elsevier, vol. 135(C), pages 266-276.
    20. Hosseini, Seyed Amir & Abyaneh, Hossein Askarian & Sadeghi, Seyed Hossein Hesamedin & Razavi, Farzad & Nasiri, Adel, 2016. "An overview of microgrid protection methods and the factors involved," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 174-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5937-:d:444851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.