IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5900-d443881.html
   My bibliography  Save this article

Thermo-Mechanical Stress Comparison of a GaN and SiC MOSFET for Photovoltaic Applications

Author

Listed:
  • Wieland Van De Sande

    (Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
    IMOMEC, IMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
    EnergyVille, Thorpark 8320, 3600 Genk, Belgium)

  • Omid Alavi

    (Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
    IMOMEC, IMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
    EnergyVille, Thorpark 8320, 3600 Genk, Belgium)

  • Philippe Nivelle

    (Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
    IMOMEC, IMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
    EnergyVille, Thorpark 8320, 3600 Genk, Belgium)

  • Jan D’Haen

    (Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
    IMOMEC, IMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium)

  • Michaël Daenen

    (Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
    IMOMEC, IMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
    EnergyVille, Thorpark 8320, 3600 Genk, Belgium)

Abstract

Integrating photovoltaic applications within urban environments creates the need for more compact and efficient power electronics that can guarantee long lifetimes. The upcoming wide-bandgap semiconductor devices show great promise in providing the first two properties, but their packaging requires further testing in order to optimize their reliability. This paper demonstrates one iteration of the design for reliability methodology used in order to compare the generated thermo-mechanical stress in the die attach and the bond wires of a GaN and SiC MOSFET. An electro-thermal model of a photovoltaic string inverter is used in order to translate a cloudy and a clear one-hour mission profile from Arizona into a junction losses profile. Subsequently, the finite element method models of both devices are constructed through reverse engineering in order to analyze the plastic energy. The results show that the plastic energy in the die attach caused by a cloudy mission-profile is much higher than that caused by a clear mission-profile. The GaN MOSFET, in spite of its reduced losses, endures around 5 times more plastic energy dissipation density in its die attach than the SiC MOSFET while the reverse is true for the bond wires. Potential design adaptations for both devices have been suggested to initiate a new iteration in the design for reliability methodology, which will ultimately lead to a more reliable design.

Suggested Citation

  • Wieland Van De Sande & Omid Alavi & Philippe Nivelle & Jan D’Haen & Michaël Daenen, 2020. "Thermo-Mechanical Stress Comparison of a GaN and SiC MOSFET for Photovoltaic Applications," Energies, MDPI, vol. 13(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5900-:d:443881
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elyas Rakhshani & Kumars Rouzbehi & Adolfo J. Sánchez & Ana Cabrera Tobar & Edris Pouresmaeil, 2019. "Integration of Large Scale PV-Based Generation into Power Systems: A Survey," Energies, MDPI, vol. 12(8), pages 1-19, April.
    2. Arkadiusz Dobrzycki & Dariusz Kurz & Stanisław Mikulski & Grzegorz Wodnicki, 2020. "Analysis of the Impact of Building Integrated Photovoltaics (BIPV) on Reducing the Demand for Electricity and Heat in Buildings Located in Poland," Energies, MDPI, vol. 13(10), pages 1-19, May.
    3. Harry Apostoleris & Sgouris Sgouridis & Marco Stefancich & Matteo Chiesa, 2019. "Utility solar prices will continue to drop all over the world even without subsidies," Nature Energy, Nature, vol. 4(10), pages 833-834, October.
    4. Wieland Van De Sande & Simon Ravyts & Omid Alavi & Philippe Nivelle & Johan Driesen & Michaël Daenen, 2020. "The Sensitivity of an Electro-Thermal Photovoltaic DC–DC Converter Model to the Temperature Dependence of the Electrical Variables for Reliability Analyses," Energies, MDPI, vol. 13(11), pages 1-16, June.
    5. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Lo Franco & Mattia Ricco & Riccardo Mandrioli & Gabriele Grandi, 2020. "Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization," Energies, MDPI, vol. 13(19), pages 1-25, September.
    2. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    3. Fabio Corti & Antonino Laudani & Gabriele Maria Lozito & Martina Palermo & Michele Quercio & Francesco Pattini & Stefano Rampino, 2023. "Dynamic Analysis of a Supercapacitor DC-Link in Photovoltaic Conversion Applications," Energies, MDPI, vol. 16(16), pages 1-19, August.
    4. Kaloop, Mosbeh R. & Bardhan, Abidhan & Kardani, Navid & Samui, Pijush & Hu, Jong Wan & Ramzy, Ahmed, 2021. "Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    6. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    7. Sgouridis, Sgouris & Ali, Mohamed & Sleptchenko, Andrei & Bouabid, Ali & Ospina, Gustavo, 2021. "Aluminum smelters in the energy transition: Optimal configuration and operation for renewable energy integration in high insolation regions," Renewable Energy, Elsevier, vol. 180(C), pages 937-953.
    8. Jaewan Suh & Minhan Yoon & Seungmin Jung, 2020. "Practical Application Study for Precision Improvement Plan for Energy Storage Devices Based on Iterative Methods," Energies, MDPI, vol. 13(3), pages 1-13, February.
    9. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Xiao, Han & Song, Feng & Zheng, Xinye & Chen, Jiaying, 2023. "Community-based energy revolution: An evaluation of China's photovoltaic poverty alleviation Program's economic and social benefits," Energy Policy, Elsevier, vol. 177(C).
    11. Anna Neumüller & Stefan Geier & Doris Österreicher, 2023. "Life Cycle Assessment for Photovoltaic Structures—Comparative Study of Rooftop and Free-Field PV Applications," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    12. Jäger-Waldau, Arnulf & Kougias, Ioannis & Taylor, Nigel & Thiel, Christian, 2020. "How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    13. Gholami, Hassan & Røstvik, Harald Nils, 2020. "Economic analysis of BIPV systems as a building envelope material for building skins in Europe," Energy, Elsevier, vol. 204(C).
    14. Weerasinghe, R.P.N.P. & Yang, R.J. & Wakefield, R. & Too, E. & Le, T. & Corkish, R. & Chen, S. & Wang, C., 2021. "Economic viability of building integrated photovoltaics: A review of forty-five (45) non-domestic buildings in twelve (12) western countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Minh Nhut Ngo & Philippe Ladoux & Jérémy Martin & Sébastien Sanchez, 2022. "Silicium-Carbide-Based Isolated DC/DC Converter for Medium-Voltage Photovoltaic Power Plants," Energies, MDPI, vol. 15(3), pages 1-17, January.
    16. Fernando Alonso-Marroquin & Ghulam Qadir, 2023. "Synergy between Photovoltaic Panels and Green Roofs," Energies, MDPI, vol. 16(13), pages 1-17, July.
    17. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2021. "Energy Effectiveness or Economic Profitability? A Case Study of Thermal Modernization of a School Building," Energies, MDPI, vol. 14(7), pages 1-21, April.
    18. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    19. Mohammed Bin Afif & Abdulla Bin Afif & Harry Apostoleris & Krishiv Gandhi & Anup Dadlani & Amal Al Ghaferi & Jan Torgersen & Matteo Chiesa, 2022. "Ultra-Cheap Renewable Energy as an Enabling Technology for Deep Industrial Decarbonization via Capture and Utilization of Process CO 2 Emissions," Energies, MDPI, vol. 15(14), pages 1-15, July.
    20. Arkadiusz Dobrzycki & Dariusz Kurz & Stanisław Mikulski & Grzegorz Wodnicki, 2020. "Analysis of the Impact of Building Integrated Photovoltaics (BIPV) on Reducing the Demand for Electricity and Heat in Buildings Located in Poland," Energies, MDPI, vol. 13(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5900-:d:443881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.