IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13692-d1239301.html
   My bibliography  Save this article

Life Cycle Assessment for Photovoltaic Structures—Comparative Study of Rooftop and Free-Field PV Applications

Author

Listed:
  • Anna Neumüller

    (Department of Landscape, Spatial and Infrastructure Sciences, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, 1190 Vienna, Austria)

  • Stefan Geier

    (Department of Landscape, Spatial and Infrastructure Sciences, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, 1190 Vienna, Austria)

  • Doris Österreicher

    (Department of Landscape, Spatial and Infrastructure Sciences, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, 1190 Vienna, Austria)

Abstract

The European Union has set itself the goal of increasing its share in renewable energy up to 42.5% by 2030 by accelerating the clean energy transition plan. National legislation within the Member States must now adapt the strategic plans to rapidly implement their allocation in renewable energy. Solar photovoltaics are in this context considered to be one of the technologies that could rapidly be rolled out, with both building-integrated as well as free-field photovoltaic systems needed to reach these ambitious goals. There are strong arguments for prioritizing photovoltaics on buildings, as they make use of land that is already sealed, and the environmental impact is considered lower as fewer resources might be needed for the structures holding the panels. However, since there is limited literature available to back this claim with quantitative data, this paper presents a comparative study of the structures needed to implement rooftop versus free-field photovoltaic applications. With a detailed life cycle analysis, several commonly used structures have been analyzed in relation to their environmental impact. The findings show that the impact on resources can be up to 50% lower in rooftop systems compared with free-field applications but that a series of site- and material-related factors need to be considered to prioritize one system over another on a regional scale. This study thus aims at providing fact-based decision support for strategic considerations related to photovoltaic implementation plans.

Suggested Citation

  • Anna Neumüller & Stefan Geier & Doris Österreicher, 2023. "Life Cycle Assessment for Photovoltaic Structures—Comparative Study of Rooftop and Free-Field PV Applications," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13692-:d:1239301
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13692/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anctil, Annick & Lee, Eunsang & Lunt, Richard R., 2020. "Net energy and cost benefit of transparent organic solar cells in building-integrated applications," Applied Energy, Elsevier, vol. 261(C).
    2. Raghava Kommalapati & Akhil Kadiyala & Md. Tarkik Shahriar & Ziaul Huque, 2017. "Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems," Energies, MDPI, vol. 10(3), pages 1-18, March.
    3. Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
    4. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    5. Stoeglehner, G. & Abart-Heriszt, L., 2022. "Integrated spatial and energy planning in Styria – A role model for local and regional energy transition and climate protection policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Fthenakis, Vasilis & Kim, Hyung Chul, 2009. "Land use and electricity generation: A life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1465-1474, August.
    7. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    8. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    9. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    2. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    3. Emanuele Bonamente & Lara Pelliccia & Maria Cleofe Merico & Sara Rinaldi & Alessandro Petrozzi, 2015. "The Multifunctional Environmental Energy Tower: Carbon Footprint and Land Use Analysis of an Integrated Renewable Energy Plant," Sustainability, MDPI, vol. 7(10), pages 1-21, October.
    4. Megan Belongeay & Gabriela Shirkey & Marina Monteiro Lunardi & Gonzalo Rodriguez-Garcia & Parikhit Sinha & Richard Corkish & Rodney A. Stewart & Annick Anctil & Jiquan Chen & Ilke Celik, 2023. "Photovoltaic Systems through the Lens of Material-Energy-Water Nexus," Energies, MDPI, vol. 16(7), pages 1-12, March.
    5. Junedi, M.M. & Ludin, N.A. & Hamid, N.H. & Kathleen, P.R. & Hasila, J. & Ahmad Affandi, N.A., 2022. "Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    7. Cyril Anak John & Lian See Tan & Jully Tan & Peck Loo Kiew & Azmi Mohd Shariff & Hairul Nazirah Abdul Halim, 2021. "Selection of Renewable Energy in Rural Area Via Life Cycle Assessment-Analytical Hierarchy Process (LCA-AHP): A Case Study of Tatau, Sarawak," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    8. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    9. Amor, Mourad Ben & Lesage, Pascal & Pineau, Pierre-Olivier & Samson, Réjean, 2010. "Can distributed generation offer substantial benefits in a Northeastern American context? A case study of small-scale renewable technologies using a life cycle methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2885-2895, December.
    10. Bany Mousa, Osama & Kara, Sami & Taylor, Robert A., 2019. "Comparative energy and greenhouse gas assessment of industrial rooftop-integrated PV and solar thermal collectors," Applied Energy, Elsevier, vol. 241(C), pages 113-123.
    11. Parisi, M.L. & Maranghi, S. & Vesce, L. & Sinicropi, A. & Di Carlo, A. & Basosi, R., 2020. "Prospective life cycle assessment of third-generation photovoltaics at the pre-industrial scale: A long-term scenario approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    12. Tianyi Chen & Yaning An & Chye Kiang Heng, 2022. "A Review of Building-Integrated Photovoltaics in Singapore: Status, Barriers, and Prospects," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    13. Hernandez, R.R. & Easter, S.B. & Murphy-Mariscal, M.L. & Maestre, F.T. & Tavassoli, M. & Allen, E.B. & Barrows, C.W. & Belnap, J. & Ochoa-Hueso, R. & Ravi, S. & Allen, M.F., 2014. "Environmental impacts of utility-scale solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 766-779.
    14. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    15. Andreas von Döllen & YoungSeok Hwang & Stephan Schlüter, 2021. "The Future Is Colorful—An Analysis of the CO 2 Bow Wave and Why Green Hydrogen Cannot Do It Alone," Energies, MDPI, vol. 14(18), pages 1-20, September.
    16. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    17. Khencha Khadidja & Biara Ratiba Wided & Belmili Hocine, 2020. "Techno-economic study of BIPV in typical Sahara region in Algeria," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 9(1), pages 27-57, September.
    18. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    19. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    20. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13692-:d:1239301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.