IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i5p2574-d510553.html
   My bibliography  Save this article

A Study of Optimal Specifications for Light Shelves with Photovoltaic Modules to Improve Indoor Comfort and Save Building Energy

Author

Listed:
  • Heangwoo Lee

    (Major in Spatial Design, College of Design, Sangmyung University, Cheonan-si 31066, Chungcheongnam-do, Korea)

  • Xiaolong Zhao

    (Department of Design, College of Design, Sangmyung University, Cheonan-si 31066, Chungcheongnam-do, Korea)

  • Janghoo Seo

    (School of Architecture, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea)

Abstract

Recent studies on light shelves found that building energy efficiency could be maximized by applying photovoltaic (PV) modules to light shelf reflectors. Although PV modules generate a substantial amount of heat and change the consumption of indoor heating and cooling energy, performance evaluations carried out thus far have not considered these factors. This study validated the effectiveness of PV module light shelves and determined optimal specifications while considering heating and cooling energy savings. A full-scale testbed was built to evaluate performance according to light shelf variables. The uniformity ratio was found to improve according to the light shelf angle value and decreased as the PV module installation area increased. It was determined that PV modules should be considered in the design of light shelves as their daylighting and concentration efficiency change according to their angles. PV modules installed on light shelves were also found to change the indoor cooling and heating environment; the degree of such change increased as the area of the PV module increased. Lastly, light shelf specifications for reducing building energy, including heating and cooling energy, were not found to apply to PV modules since PV modules on light shelf reflectors increase building energy consumption.

Suggested Citation

  • Heangwoo Lee & Xiaolong Zhao & Janghoo Seo, 2021. "A Study of Optimal Specifications for Light Shelves with Photovoltaic Modules to Improve Indoor Comfort and Save Building Energy," IJERPH, MDPI, vol. 18(5), pages 1-24, March.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2574-:d:510553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/5/2574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/5/2574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arkadiusz Dobrzycki & Dariusz Kurz & Stanisław Mikulski & Grzegorz Wodnicki, 2020. "Analysis of the Impact of Building Integrated Photovoltaics (BIPV) on Reducing the Demand for Electricity and Heat in Buildings Located in Poland," Energies, MDPI, vol. 13(10), pages 1-19, May.
    2. Yingdong He & Nianping Li & Xiang Wang & Meiling He & De He, 2017. "Comfort, Energy Efficiency and Adoption of Personal Cooling Systems in Warm Environments: A Field Experimental Study," IJERPH, MDPI, vol. 14(11), pages 1-26, November.
    3. Yadav, Somil & Panda, S.K., 2020. "Thermal performance of BIPV system by considering periodic nature of insolation and optimum tilt-angle of PV panel," Renewable Energy, Elsevier, vol. 150(C), pages 136-146.
    4. Chae, Young Tae & Kim, Jeehwan & Park, Hongsik & Shin, Byungha, 2014. "Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells," Applied Energy, Elsevier, vol. 129(C), pages 217-227.
    5. Heangwoo Lee & Janghoo Seo, 2020. "Performance Evaluation of External Light Shelves by Applying a Prism Sheet," Energies, MDPI, vol. 13(18), pages 1-14, September.
    6. Heangwoo Lee, 2020. "A Basic Study on the Performance Evaluation of a Movable Light Shelf with a Rolling Reflector That Can Change Reflectivity to Improve the Visual Environment," IJERPH, MDPI, vol. 17(22), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ružena Králiková & Laura Džuňová & Ervin Lumnitzer & Miriama Piňosová, 2022. "Simulation of Artificial Lighting Using Leading Software to Evaluate Lighting Conditions in the Absence of Daylight in a University Classroom," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    2. Amir Faraji & Fatemeh Rezaei & Payam Rahnamayiezekavat & Maria Rashidi & Hossein Soleimani, 2023. "Subjective and Simulation-Based Analysis of Discomfort Glare Metrics in Office Buildings with Light Shelf Systems," Sustainability, MDPI, vol. 15(15), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Reza Khalifeeh & Hameed Alrashidi & Nazmi Sellami & Tapas Mallick & Walid Issa, 2021. "State-of-the-Art Review on the Energy Performance of Semi-Transparent Building Integrated Photovoltaic across a Range of Different Climatic and Environmental Conditions," Energies, MDPI, vol. 14(12), pages 1-19, June.
    3. Cristina Cornaro & Ludovica Renzi & Marco Pierro & Aldo Di Carlo & Alessandro Guglielmotti, 2018. "Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions," Energies, MDPI, vol. 11(1), pages 1-16, January.
    4. Liang, Shen & Zheng, Hongfei & Wang, Xuanlin & Ma, Xinglong & Zhao, Zhiyong, 2022. "Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules," Renewable Energy, Elsevier, vol. 191(C), pages 71-83.
    5. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    6. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    7. Sehyun Tak & Soomin Woo & Jiyoung Park & Sungjin Park, 2017. "Effect of the Changeable Organic Semi-Transparent Solar Cell Window on Building Energy Efficiency and User Comfort," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    8. Chatzipanagi, Anatoli & Frontini, Francesco & Virtuani, Alessandro, 2016. "BIPV-temp: A demonstrative Building Integrated Photovoltaic installation," Applied Energy, Elsevier, vol. 173(C), pages 1-12.
    9. Cannavale, Alessandro & Ierardi, Laura & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Improving energy and visual performance in offices using building integrated perovskite-based solar cells: A case study in Southern Italy," Applied Energy, Elsevier, vol. 205(C), pages 834-846.
    10. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.
    11. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    12. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    13. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    14. Alessandro Cannavale & Francesco Martellotta & Francesco Fiorito & Ubaldo Ayr, 2020. "The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices," Energies, MDPI, vol. 13(8), pages 1-24, April.
    15. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    16. Nuria Martín-Chivelet & Cecilia Guillén & Juan Francisco Trigo & José Herrero & Juan José Pérez & Faustino Chenlo, 2018. "Comparative Performance of Semi-Transparent PV Modules and Electrochromic Windows for Improving Energy Efficiency in Buildings," Energies, MDPI, vol. 11(6), pages 1-12, June.
    17. Hyung Jun An & Jong Ho Yoon & Young Sub An & Eunnyeong Heo, 2018. "Heating and Cooling Performance of Office Buildings with a-Si BIPV Windows Considering Operating Conditions in Temperate Climates: The Case of Korea," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    18. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    19. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    20. Ihara, Takeshi & Gao, Tao & Grynning, Steinar & Jelle, Bjørn Petter & Gustavsen, Arild, 2015. "Aerogel granulate glazing facades and their application potential from an energy saving perspective," Applied Energy, Elsevier, vol. 142(C), pages 179-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2574-:d:510553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.