IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5806-d440836.html
   My bibliography  Save this article

Energy Sustainability of Rural Residential Buildings with Bio-Based Building Fabric in Northeast China

Author

Listed:
  • Xunzhi Yin

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Jiaqi Yu

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Qi Dong

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Yongheng Jia

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Cheng Sun

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

Abstract

Due to the cold winters in northeast China, the energy consumption of the rural residential buildings is much higher in this region than in other regions. In this study, the energy sustainability of bio-based wall construction is examined through applications in rural residential buildings. Comparisons of the energy sustainability of the bio-based wall constructions and the conventional wall constructions are evaluated using IESVE-2019 computational simulation. The results show notable reductions in heating energy requirements and coal use, which is the major heating source for rural residential buildings in China. The results show that reductions of 45.82–204.07 kWh/m 2 /year in heating energy requirements and more than 40% in coal use are possible through application of bio-based wall constructions. The application of bio-based wall construction will result in lower seasonal air pollution and coal use through straw burning in northeast China.

Suggested Citation

  • Xunzhi Yin & Jiaqi Yu & Qi Dong & Yongheng Jia & Cheng Sun, 2020. "Energy Sustainability of Rural Residential Buildings with Bio-Based Building Fabric in Northeast China," Energies, MDPI, vol. 13(21), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5806-:d:440836
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5806/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5806/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haibo Guo & Ying Liu & Wen-Shao Chang & Yu Shao & Cheng Sun, 2017. "Energy Saving and Carbon Reduction in the Operation Stage of Cross Laminated Timber Residential Buildings in China," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    2. Chang, Yuan & Ries, Robert J. & Wang, Yaowu, 2013. "Life-cycle energy of residential buildings in China," Energy Policy, Elsevier, vol. 62(C), pages 656-664.
    3. Liu, Zhijian & Zhou, Qingxu & Tian, Zhiyong & He, Bao-jie & Jin, Guangya, 2019. "A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. César Benavente-Peces, 2019. "On the Energy Efficiency in the Next Generation of Smart Buildings—Supporting Technologies and Techniques," Energies, MDPI, vol. 12(22), pages 1-25, November.
    5. Stefano Cascone & Gianpiero Evola & Antonio Gagliano & Gaetano Sciuto & Chiara Baroetto Parisi, 2019. "Laboratory and In-Situ Measurements for Thermal and Acoustic Performance of Straw Bales," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    6. César Benavente-Peces & Nisrine Ibadah, 2020. "Buildings Energy Efficiency Analysis and Classification Using Various Machine Learning Technique Classifiers," Energies, MDPI, vol. 13(13), pages 1-24, July.
    7. Yu, Sha & Eom, Jiyong & Zhou, Yuyu & Evans, Meredydd & Clarke, Leon, 2014. "Scenarios of building energy demand for China with a detailed regional representation," Energy, Elsevier, vol. 67(C), pages 284-297.
    8. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    9. Zhang, Na & Lior, Noam & Jin, Hongguang, 2011. "The energy situation and its sustainable development strategy in China," Energy, Elsevier, vol. 36(6), pages 3639-3649.
    10. Chai, Qimin & Zhang, Xiliang, 2010. "Technologies and policies for the transition to a sustainable energy system in china," Energy, Elsevier, vol. 35(10), pages 3995-4002.
    11. Zhao, Haoran & Guo, Sen & Zhao, Huiru, 2019. "Provincial energy efficiency of China quantified by three-stage data envelopment analysis," Energy, Elsevier, vol. 166(C), pages 96-107.
    12. Stefano Cascone & Renata Rapisarda & Dario Cascone, 2019. "Physical Properties of Straw Bales as a Construction Material: A Review," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    13. Yang, Tao & Pan, Yiqun & Yang, Yikun & Lin, Meishun & Qin, Bingyue & Xu, Peng & Huang, Zhizhong, 2017. "CO2 emissions in China's building sector through 2050: A scenario analysis based on a bottom-up model," Energy, Elsevier, vol. 128(C), pages 208-223.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye Chen & Keisuke Kitagawa, 2023. "Locally Based Architectural Construction Strategies in Rural China: Textual Analysis of Architects’ Design Thinking," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    2. Qing Yin & Muhan Yu & Xueliang Ma & Ying Liu & Xunzhi Yin, 2023. "The Role of Straw Materials in Energy-Efficient Buildings: Current Perspectives and Future Trends," Energies, MDPI, vol. 16(8), pages 1-24, April.
    3. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Xiaoqian & Guo, Yanfeng & Wei, Yu & Huang, Dengshi, 2014. "How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China," Energy Economics, Elsevier, vol. 41(C), pages 63-75.
    2. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    3. Huo, Tengfei & Xu, Linbo & Feng, Wei & Cai, Weiguang & Liu, Bingsheng, 2021. "Dynamic scenario simulations of carbon emission peak in China's city-scale urban residential building sector through 2050," Energy Policy, Elsevier, vol. 159(C).
    4. Reboredo, Juan C. & Wen, Xiaoqian, 2015. "Are China’s new energy stock prices driven by new energy policies?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 624-636.
    5. Fang, Yiping & Deng, Wei, 2011. "The critical scale and section management of cascade hydropower exploitation in Southwestern China," Energy, Elsevier, vol. 36(10), pages 5944-5953.
    6. Liang, Sai & Zhang, Tianzhu, 2011. "Interactions of energy technology development and new energy exploitation with water technology development in China," Energy, Elsevier, vol. 36(12), pages 6960-6966.
    7. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    8. Wang, Nannan & Chang, Yen-Chiang, 2014. "The evolution of low-carbon development strategies in China," Energy, Elsevier, vol. 68(C), pages 61-70.
    9. Jin Zhu & Dequn Zhou & Zhengning Pu & Huaping Sun, 2019. "A Study of Regional Power Generation Efficiency in China: Based on a Non-Radial Directional Distance Function Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    10. Duan, Haiyan & Chen, Siyan & Song, Junnian, 2022. "Characterizing regional building energy consumption under joint climatic and socioeconomic impacts," Energy, Elsevier, vol. 245(C).
    11. Herrerias, M.J. & Liu, G., 2013. "Electricity intensity across Chinese provinces: New evidence on convergence and threshold effects," Energy Economics, Elsevier, vol. 36(C), pages 268-276.
    12. Yuan, Jiahai & Xu, Yan & Hu, Zhaoguang, 2012. "Delivering power system transition in China," Energy Policy, Elsevier, vol. 50(C), pages 751-772.
    13. Huo, Tengfei & Xu, Linbo & Liu, Bingsheng & Cai, Weiguang & Feng, Wei, 2022. "China’s commercial building carbon emissions toward 2060: An integrated dynamic emission assessment model," Applied Energy, Elsevier, vol. 325(C).
    14. Yuan, Jiahai & Xu, Yan & Hu, Zhen & Yu, Zhongfu & Liu, Jiangyan & Hu, Zhaoguang & Xu, Ming, 2012. "Managing electric power system transition in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5660-5677.
    15. Fu, Feng & Feng, Wen & Li, Zheng & Crawley, Edward F. & Ni, Weidou, 2011. "A network-based modeling framework for stakeholder analysis of China’s energy conservation campaign," Energy, Elsevier, vol. 36(8), pages 4996-5003.
    16. Xunzhi Yin & Qi Dong & Siyuan Zhou & Jiaqi Yu & Lu Huang & Cheng Sun, 2020. "Energy-Saving Potential of Applying Prefabricated Straw Bale Construction (PSBC) in Domestic Buildings in Northern China," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    17. Ghadie Tlaiji & Pascal Biwole & Salah Ouldboukhitine & Fabienne Pennec, 2022. "A Mini-Review on Straw Bale Construction," Energies, MDPI, vol. 15(21), pages 1-8, October.
    18. Guo, Qiu-tong & Dong, Yong & Feng, Biao & Zhang, Hao, 2023. "Can green finance development promote total-factor energy efficiency? Empirical evidence from China based on a spatial Durbin model," Energy Policy, Elsevier, vol. 177(C).
    19. Xu, Guangyue & Wang, Weimin, 2020. "China’s energy consumption in construction and building sectors: An outlook to 2100," Energy, Elsevier, vol. 195(C).
    20. Tang, Bao-Jun & Guo, Yang-Yang & Yu, Biying & Harvey, L.D. Danny, 2021. "Pathways for decarbonizing China’s building sector under global warming thresholds," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5806-:d:440836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.