IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5789-d440288.html
   My bibliography  Save this article

A Decoupling Rolling Multi-Period Power and Voltage Optimization Strategy in Active Distribution Networks

Author

Listed:
  • Xiaohui Ge

    (Electric Power Research Institute of State Grid Zhejiang Electric Power Company, Hangzhou 310014, China)

  • Lu Shen

    (Department of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Chaoming Zheng

    (State Grid Zhejiang Electric Power Corporation, Hangzhou 310007, China)

  • Peng Li

    (Electric Power Research Institute of State Grid Zhejiang Electric Power Company, Hangzhou 310014, China)

  • Xiaobo Dou

    (Department of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

With the increasing penetration of distributed photovoltaics (PVs) in active distribution networks (ADNs), the risk of voltage violations caused by PV uncertainties is significantly exacerbated. Since the conventional voltage regulation strategy is limited by its discrete devices and delay, ADN operators allow PVs to participate in voltage optimization by controlling their power outputs and cooperating with traditional regulation devices. This paper proposes a decoupling rolling multi-period reactive power and voltage optimization strategy considering the strong time coupling between different devices. The mixed-integer voltage optimization model is first decomposed into a long-period master problem for on-load tap changer (OLTC) and multiple short-period subproblems for PV power by Benders decomposition algorithm. Then, based on the high-precision PV and load forecasts, the model predictive control (MPC) method is utilized to modify the independent subproblems into a series of subproblems that roll with the time window, achieving a smooth transition from the current state to the ideal state. The estimated voltage variation in the prediction horizon of MPC is calculated by a simplified discrete equation for OLTC tap and a linearized sensitivity matrix between power and voltage for fast computation. The feasibility of the proposed optimization strategy is demonstrated by performing simulations on a distribution test system.

Suggested Citation

  • Xiaohui Ge & Lu Shen & Chaoming Zheng & Peng Li & Xiaobo Dou, 2020. "A Decoupling Rolling Multi-Period Power and Voltage Optimization Strategy in Active Distribution Networks," Energies, MDPI, vol. 13(21), pages 1-36, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5789-:d:440288
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5789/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5789/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cossent, Rafael & Gómez, Tomás & Olmos, Luis, 2011. "Large-scale integration of renewable and distributed generation of electricity in Spain: Current situation and future needs," Energy Policy, Elsevier, vol. 39(12), pages 8078-8087.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    2. Nevena Srećković & Miran Rošer & Gorazd Štumberger, 2021. "Utilization of Active Distribution Network Elements for Optimization of a Distribution Network Operation," Energies, MDPI, vol. 14(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amedeo Andreotti & Alberto Petrillo & Stefania Santini & Alfredo Vaccaro & Domenico Villacci, 2019. "A Decentralized Architecture Based on Cooperative Dynamic Agents for Online Voltage Regulation in Smart Grids," Energies, MDPI, vol. 12(7), pages 1-14, April.
    2. Darius Corbier & Frédéric Gonand & Marie Bessec, 2015. "Impacts of decentralised power generation on distribution networks: a statistical typology of European countries," Working Papers 1509, Chaire Economie du climat.
    3. Marques, António Cardoso & Fuinhas, José Alberto & Menegaki, Angeliki N., 2014. "Interactions between electricity generation sources and economic activity in Greece: A VECM approach," Applied Energy, Elsevier, vol. 132(C), pages 34-46.
    4. Marques, António Cardoso & Fuinhas, José Alberto, 2015. "The role of Portuguese electricity generation regimes and industrial production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 321-330.
    5. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    6. Dupont, B. & De Jonghe, C. & Olmos, L. & Belmans, R., 2014. "Demand response with locational dynamic pricing to support the integration of renewables," Energy Policy, Elsevier, vol. 67(C), pages 344-354.
    7. Jean-Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Working Papers EPRG 1329, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Gaspari, Michele & Lorenzoni, Arturo, 2018. "The governance for distributed energy resources in the Italian electricity market: A driver for innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3623-3632.
    9. Linda Barelli & Gianni Bidini & Fabio Bonucci & Luca Castellini & Simone Castellini & Andrea Ottaviano & Dario Pelosi & Alberto Zuccari, 2018. "Dynamic Analysis of a Hybrid Energy Storage System (H-ESS) Coupled to a Photovoltaic (PV) Plant," Energies, MDPI, vol. 11(2), pages 1-23, February.
    10. Bianco, Vincenzo & Driha, Oana M. & Sevilla-Jiménez, Martín, 2019. "Effects of renewables deployment in the Spanish electricity generation sector," Utilities Policy, Elsevier, vol. 56(C), pages 72-81.
    11. Chou, Shuo-Yan & Nguyen, Thi Anh Tuyet & Yu, Tiffany Hui-Kuang & Phan, Nguyen Ky Phuc, 2015. "Financial assessment of government subsidy policy on photovoltaic systems for industrial users: A case study in Taiwan," Energy Policy, Elsevier, vol. 87(C), pages 505-516.
    12. Colmenar-Santos, Antonio & Campíñez-Romero, Severo & Pérez-Molina, Clara & Castro-Gil, Manuel, 2012. "Profitability analysis of grid-connected photovoltaic facilities for household electricity self-sufficiency," Energy Policy, Elsevier, vol. 51(C), pages 749-764.
    13. Galassi, Veronica & Madlener, Reinhard, 2014. "Identifying Business Models for Photovoltaic Systems with Storage in the Italian Market: A Discrete Choice Experiment," FCN Working Papers 19/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    14. Xenias, Dimitrios & Axon, Colin J. & Whitmarsh, Lorraine & Connor, Peter M. & Balta-Ozkan, Nazmiye & Spence, Alexa, 2015. "UK smart grid development: An expert assessment of the benefits, pitfalls and functions," Renewable Energy, Elsevier, vol. 81(C), pages 89-102.
    15. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    16. Joan Batalla-Bejerano & Elisa Trujillo-Baute, 2015. "Analysing the sensitivity of electricity system operational costs to deviations in supply and demand," Working Papers 2015/8, Institut d'Economia de Barcelona (IEB).
    17. Barbosa, Luciana & Nunes, Cláudia & Rodrigues, Artur & Sardinha, Alberto, 2020. "Feed-in tariff contract schemes and regulatory uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 331-347.
    18. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, Georgios, 2016. "The value of arbitrage for energy storage: Evidence from European electricity markets," Applied Energy, Elsevier, vol. 184(C), pages 971-986.
    19. Gaspari, Michele & Lorenzoni, Arturo & Frías, Pablo & Reneses, Javier, 2017. "Integrated Energy Services for the industrial sector: an innovative model for sustainable electricity supply," Utilities Policy, Elsevier, vol. 45(C), pages 118-127.
    20. Barelli, L. & Desideri, U. & Ottaviano, A., 2015. "Challenges in load balance due to renewable energy sources penetration: The possible role of energy storage technologies relative to the Italian case," Energy, Elsevier, vol. 93(P1), pages 393-405.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5789-:d:440288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.