IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4874-d415088.html
   My bibliography  Save this article

Integration of Joint Power-Heat Flexibility of Oil Refinery Industries to Uncertain Energy Markets

Author

Listed:
  • Hessam Golmohamadi

    (Department of Computer Science, Aalborg University, 9220 Aalborg, Denmark)

  • Amin Asadi

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam)

Abstract

This paper proposes a novel approach to optimize the main energy consumptions of heavy oil refining industries (ORI) in response to electricity price uncertainties. The whole industrial sub-processes of the ORI are modeled mathematically to investigate the joint power-heat flexibility potentials of the industry. To model the refinery processes, an input/output flow-based model is proposed for five main refining units. Moreover, the role of storage tanks capacity in the power system flexibility is investigated. To hedge against the electricity price uncertainty, an uncertain bound for the wholesale electricity price is addressed. To optimize the industrial processes, a dual robust mixed-integer quadratic program (R-MIQP) is adopted; therefore, the ORI’s operational strategies are determined under the worst-case realization of the electricity price uncertainty. Finally, the suggested approach is implemented in the south-west sector of the Iran Energy Market that suffers from a lack of electricity in hot days of summer. The simulation results confirm that the proposed framework ensures industrial demand flexibility to the external grids when a power shortage occurs. The approach not only provides demand flexibility to the power system, but also minimizes the operation cost of the industries.

Suggested Citation

  • Hessam Golmohamadi & Amin Asadi, 2020. "Integration of Joint Power-Heat Flexibility of Oil Refinery Industries to Uncertain Energy Markets," Energies, MDPI, vol. 13(18), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4874-:d:415088
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Renzi, Massimiliano & Rudolf, Pavel & Štefan, David & Nigro, Alessandra & Rossi, Mosè, 2019. "Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study," Applied Energy, Elsevier, vol. 250(C), pages 665-676.
    2. Coatalem, Martin & Mazauric, Vincent & Le Pape-Gardeux, Claude & Maïzi, Nadia, 2017. "Optimizing industries’ power generation assets on the electricity markets," Applied Energy, Elsevier, vol. 185(P2), pages 1744-1756.
    3. Weijermars, Ruud, 2009. "Accelerating the three dimensions of E&P clockspeed - A novel strategy for optimizing utility in the Oil & Gas industry," Applied Energy, Elsevier, vol. 86(10), pages 2222-2243, October.
    4. Sharaf Eldean, Mohamed A. & Soliman, A.M., 2017. "A novel study of using oil refinery plants waste gases for thermal desalination and electric power generation: Energy, exergy & cost evaluations," Applied Energy, Elsevier, vol. 195(C), pages 453-477.
    5. Kumar, A. & Gautami, G. & Khanam, S., 2010. "Hydrogen distribution in the refinery using mathematical modeling," Energy, Elsevier, vol. 35(9), pages 3763-3772.
    6. Zhou, Li & Liao, Zuwei & Wang, Jingdai & Jiang, Binbo & Yang, Yongrong & Du, Wenli, 2015. "Energy configuration and operation optimization of refinery fuel gas networks," Applied Energy, Elsevier, vol. 139(C), pages 365-375.
    7. Castelo Branco, David A. & Gomes, Gabriel L. & Szklo, Alexandre S., 2010. "Challenges and technological opportunities for the oil refining industry: A Brazilian refinery case," Energy Policy, Elsevier, vol. 38(6), pages 3098-3105, June.
    8. Rivero, R. & Garcia, M. & Urquiza, J., 2004. "Simulation, exergy analysis and application of diabatic distillation to a tertiary amyl methyl ether production unit of a crude oil refinery," Energy, Elsevier, vol. 29(3), pages 467-489.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    3. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Mahdi Azimian & Vahid Amir & Reza Habibifar & Hessam Golmohamadi, 2021. "Probabilistic Optimization of Networked Multi-Carrier Microgrids to Enhance Resilience Leveraging Demand Response Programs," Sustainability, MDPI, vol. 13(11), pages 1-30, May.
    5. Golmohamadi, Hessam, 2021. "Stochastic energy optimization of residential heat pumps in uncertain electricity markets," Applied Energy, Elsevier, vol. 303(C).
    6. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Daryabari, Mohamad K. & Keypour, Reza & Golmohamadi, Hessam, 2021. "Robust self-scheduling of parking lot microgrids leveraging responsive electric vehicles," Applied Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, Mosè & Comodi, Gabriele & Piacente, Nicola & Renzi, Massimiliano, 2020. "Energy recovery in oil refineries by means of a Hydraulic Power Recovery Turbine (HPRT) handling viscous liquids," Applied Energy, Elsevier, vol. 270(C).
    2. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Weijermars, Ruud, 2010. "Guidelines for clockspeed acceleration in the US natural gas transmission industry," Applied Energy, Elsevier, vol. 87(8), pages 2455-2466, August.
    4. Nguyen, Nghi & Demirel, Yaşar, 2010. "Retrofit of distillation columns in biodiesel production plants," Energy, Elsevier, vol. 35(4), pages 1625-1632.
    5. Liu, Xuepeng & Liu, Jian & Deng, Chun & Lee, Jui-Yuan & Tan, Raymond R., 2020. "Synthesis of refinery hydrogen network integrated with hydrogen turbines for power recovery," Energy, Elsevier, vol. 201(C).
    6. Hoffmann, Bettina Susanne & Szklo, Alexandre, 2011. "Integrated gasification combined cycle and carbon capture: A risky option to mitigate CO2 emissions of coal-fired power plants," Applied Energy, Elsevier, vol. 88(11), pages 3917-3929.
    7. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
    8. Khoa, T.D. & Shuhaimi, M. & Hashim, H. & Panjeshahi, M.H., 2010. "Optimal design of distillation column using three dimensional exergy analysis curves," Energy, Elsevier, vol. 35(12), pages 5309-5319.
    9. Faraz Qasim & Doug Hyung Lee & Jongkuk Won & Jin-Kuk Ha & Sang Jin Park, 2021. "Development of Advanced Advisory System for Anomalies (AAA) to Predict and Detect the Abnormal Operation in Fired Heaters for Real Time Process Safety and Optimization," Energies, MDPI, vol. 14(21), pages 1-24, November.
    10. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    11. Wu, Sidong & Yu, Zemiao & Feng, Xiao & Liu, Guilian & Deng, Chun & Chu, Khim Hoong, 2013. "Optimization of refinery hydrogen distribution systems considering the number of compressors," Energy, Elsevier, vol. 62(C), pages 185-195.
    12. Ionel Jianu & Iulia Jianu, 2018. "The Share Price and Investment: Current Footprints for Future Oil and Gas Industry Performance," Energies, MDPI, vol. 11(2), pages 1-15, February.
    13. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.
    14. Umana, Blessing & Shoaib, Abeer & Zhang, Nan & Smith, Robin, 2014. "Integrating hydroprocessors in refinery hydrogen network optimisation," Applied Energy, Elsevier, vol. 133(C), pages 169-182.
    15. Bandyopadhyay, Rajarshi & Alkilde, Ole Frej & Menjon, Ian & Meyland, Lene Have & Sahlertz, Iggy Vincent, 2019. "Statistical analysis of variation of economic parameters affecting different configurations of diesel hydrotreating unit," Energy, Elsevier, vol. 183(C), pages 702-715.
    16. Tor Guimaraes & Ketan Paranjape & Mike Walton, 2019. "An Expanded Model of Success Factors for NPD Performance," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(07), pages 1-29, November.
    17. Wang, Yufei & Wu, Sidong & Feng, Xiao & Deng, Chun, 2015. "An exergy-based approach for hydrogen network integration," Energy, Elsevier, vol. 86(C), pages 514-524.
    18. Wang, Qiushi & Zhu, Ziye & Wu, Gang & Zhang, Xiang & Zheng, Hongfei, 2018. "Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea," Applied Energy, Elsevier, vol. 224(C), pages 510-526.
    19. Qahtan Thabit & Abdallah Nassour & Michael Nelles, 2020. "Potentiality of Waste-to-Energy Sector Coupling in the MENA Region: Jordan as a Case Study," Energies, MDPI, vol. 13(11), pages 1-19, June.
    20. Chen, Ting & Zhang, Bingjian & Chen, Qinglin, 2014. "Heat integration of fractionating systems in para-xylene plants based on column optimization," Energy, Elsevier, vol. 72(C), pages 311-321.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4874-:d:415088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.