IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i9p3763-3772.html
   My bibliography  Save this article

Hydrogen distribution in the refinery using mathematical modeling

Author

Listed:
  • Kumar, A.
  • Gautami, G.
  • Khanam, S.

Abstract

The increased requirement of hydrogen in the refinery is fulfilled by proper distribution of available hydrogen in the refinery, using additional hydrogen production system and by importing. Amongst these options first one is cost effective as no addition source is required. Thus, the present paper deals with optimum distribution of hydrogen. For this purpose mathematical models are developed based on pressure constraints, source and sinks constraints, compressor flow rate recycle and purity constraints, flow combinations, hydrogen consumption, operating cost, capital cost, payback period etc. The model is developed in stages to show the improvements.

Suggested Citation

  • Kumar, A. & Gautami, G. & Khanam, S., 2010. "Hydrogen distribution in the refinery using mathematical modeling," Energy, Elsevier, vol. 35(9), pages 3763-3772.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3763-3772
    DOI: 10.1016/j.energy.2010.05.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210002951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.05.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hessam Golmohamadi & Amin Asadi, 2020. "Integration of Joint Power-Heat Flexibility of Oil Refinery Industries to Uncertain Energy Markets," Energies, MDPI, vol. 13(18), pages 1-25, September.
    2. Wang, Yufei & Wu, Sidong & Feng, Xiao & Deng, Chun, 2015. "An exergy-based approach for hydrogen network integration," Energy, Elsevier, vol. 86(C), pages 514-524.
    3. Johansson, Daniella & Franck, Per-Åke & Berntsson, Thore, 2012. "Hydrogen production from biomass gasification in the oil refining industry – A system analysis," Energy, Elsevier, vol. 38(1), pages 212-227.
    4. Liu, Xuepeng & Liu, Jian & Deng, Chun & Lee, Jui-Yuan & Tan, Raymond R., 2020. "Synthesis of refinery hydrogen network integrated with hydrogen turbines for power recovery," Energy, Elsevier, vol. 201(C).
    5. Shukla, Gaurav & Chaturvedi, Nitin Dutt, 2023. "Targeting compression work in hydrogen allocation network with parametric uncertainties," Energy, Elsevier, vol. 262(PA).
    6. Wu, Sidong & Yu, Zemiao & Feng, Xiao & Liu, Guilian & Deng, Chun & Chu, Khim Hoong, 2013. "Optimization of refinery hydrogen distribution systems considering the number of compressors," Energy, Elsevier, vol. 62(C), pages 185-195.
    7. Yang, Minbo & Feng, Xiao & Chu, Khim Hoong & Liu, Guilian, 2014. "Graphical method for identifying the optimal purification process of hydrogen systems," Energy, Elsevier, vol. 73(C), pages 829-837.
    8. Jia, Nan & Zhang, Nan, 2011. "Multi-component optimisation for refinery hydrogen networks," Energy, Elsevier, vol. 36(8), pages 4663-4670.
    9. Umana, Blessing & Shoaib, Abeer & Zhang, Nan & Smith, Robin, 2014. "Integrating hydroprocessors in refinery hydrogen network optimisation," Applied Energy, Elsevier, vol. 133(C), pages 169-182.
    10. Dai, Wang & Shen, Renjie & Zhang, Di & Liu, Guilian, 2017. "The integration based method for identifying the variation trend of fresh hydrogen consumption and optimal purification feed," Energy, Elsevier, vol. 119(C), pages 732-743.
    11. Bandyopadhyay, Rajarshi & Alkilde, Ole Frej & Menjon, Ian & Meyland, Lene Have & Sahlertz, Iggy Vincent, 2019. "Statistical analysis of variation of economic parameters affecting different configurations of diesel hydrotreating unit," Energy, Elsevier, vol. 183(C), pages 702-715.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3763-3772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.