IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4740-d412185.html
   My bibliography  Save this article

Development of a Eulerian Multi-Fluid Solver for Dense Spray Applications in OpenFOAM

Author

Listed:
  • Robert Keser

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia)

  • Alberto Ceschin

    (Clean Combustion Research Center, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia)

  • Michele Battistoni

    (Department of Engineering, University of Perugia, 106123 Perugia, Italy)

  • Hong G. Im

    (Clean Combustion Research Center, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia)

  • Hrvoje Jasak

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia)

Abstract

The new generation of internal combustion engines is facing various research challenges which often include modern fuels and different operating modes. A robust modeling framework is essential for predicting the dynamic behavior of such complex phenomena. In this article, the implementation, verification, and validation of a Eulerian multi-fluid model for spray applications within the OpenFOAM toolbox are presented. Due to its open-source nature and broad-spectrum of available libraries and solvers, OpenFOAM is an ideal platform for academic research. The proposed work utilizes advanced interfacial momentum transfer models to capture the behavior of deforming droplets at a high phase fraction. Furthermore, the WAVE breakup model is employed for the transfer of mass from larger to smaller droplet classes. The work gives detailed instructions regarding the numerical implementation, with a dedicated section dealing with the implementation of the breakup model within the Eulerian multi-fluid formulation. During the verification analysis, the model proved to give stable and consistent results in terms of the selected number of droplet classes and the selected spatial and temporal resolution. In the validation section, the capability of the developed model to predict the dynamic behavior of non-evaporating sprays is presented. It was confirmed that the developed framework could be used as a stable foundation for future fuel spray modeling.

Suggested Citation

  • Robert Keser & Alberto Ceschin & Michele Battistoni & Hong G. Im & Hrvoje Jasak, 2020. "Development of a Eulerian Multi-Fluid Solver for Dense Spray Applications in OpenFOAM," Energies, MDPI, vol. 13(18), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4740-:d:412185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4740/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simone Sparacino & Fabio Berni & Alessandro d’Adamo & Vesselin Krassimirov Krastev & Andrea Cavicchi & Lucio Postrioti, 2019. "Impact of the Primary Break-Up Strategy on the Morphology of GDI Sprays in 3D-CFD Simulations of Multi-Hole Injectors," Energies, MDPI, vol. 12(15), pages 1-24, July.
    2. Junji Shinjo, 2018. "Recent Advances in Computational Modeling of Primary Atomization of Liquid Fuel Sprays," Energies, MDPI, vol. 11(11), pages 1-25, November.
    3. Florian Ries & Yongxiang Li & Dario Klingenberg & Kaushal Nishad & Johannes Janicka & Amsini Sadiki, 2018. "Near-Wall Thermal Processes in an Inclined Impinging Jet: Analysis of Heat Transport and Entropy Generation Mechanisms," Energies, MDPI, vol. 11(6), pages 1-23, May.
    4. Thilo F. Dauch & Cihan Ates & Tobias Rapp & Marc C. Keller & Geoffroy Chaussonnet & Johannes Kaden & Max Okraschevski & Rainer Koch & Carsten Dachsbacher & Hans-Jörg Bauer, 2019. "Analyzing the Interaction of Vortex and Gas–Liquid Interface Dynamics in Fuel Spray Nozzles by Means of Lagrangian-Coherent Structures (2D)," Energies, MDPI, vol. 12(13), pages 1-16, July.
    5. Jacopo Zembi & Michele Battistoni & Francesco Ranuzzi & Nicolò Cavina & Matteo De Cesare, 2019. "CFD Analysis of Port Water Injection in a GDI Engine under Incipient Knock Conditions," Energies, MDPI, vol. 12(18), pages 1-22, September.
    6. Mahmoud Gadalla & Jeevananthan Kannan & Bulut Tekgül & Shervin Karimkashi & Ossi Kaario & Ville Vuorinen, 2020. "Large-Eddy Simulation of ECN Spray A: Sensitivity Study on Modeling Assumptions," Energies, MDPI, vol. 13(13), pages 1-24, July.
    7. Jaya Madana Gopal & Giovanni Tretola & Robert Morgan & Guillaume de Sercey & Andrew Atkins & Konstantina Vogiatzaki, 2020. "Understanding Sub and Supercritical Cryogenic Fluid Dynamics in Conditions Relevant to Novel Ultra Low Emission Engines," Energies, MDPI, vol. 13(12), pages 1-25, June.
    8. Himakar Ganti & Manu Kamin & Prashant Khare, 2020. "Design Space Exploration of Turbulent Multiphase Flows Using Machine Learning-Based Surrogate Model," Energies, MDPI, vol. 13(17), pages 1-23, September.
    9. Simon Holz & Samuel Braun & Geoffroy Chaussonnet & Rainer Koch & Hans-Jörg Bauer, 2019. "Close Nozzle Spray Characteristics of a Prefilming Airblast Atomizer," Energies, MDPI, vol. 12(14), pages 1-22, July.
    10. M.H.H. Ishak & Farzad Ismail & Sharzali Che Mat & M.Z. Abdullah & M.S. Abdul Aziz & M.Y. Idroas, 2019. "Numerical Analysis of Nozzle Flow and Spray Characteristics from Different Nozzles Using Diesel and Biofuel Blends," Energies, MDPI, vol. 12(2), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guodong Gai & Abdellah Hadjadj & Sergey Kudriakov & Stephane Mimouni & Olivier Thomine, 2021. "Numerical Study of Spray-Induced Turbulence Using Industrial Fire-Mitigation Nozzles," Energies, MDPI, vol. 14(4), pages 1-20, February.
    2. Bittagowdanahalli Manjegowda Ningegowda & Faniry Nadia Zazaravaka Rahantamialisoa & Adrian Pandal & Hrvoje Jasak & Hong Geun Im & Michele Battistoni, 2020. "Numerical Modeling of Transcritical and Supercritical Fuel Injections Using a Multi-Component Two-Phase Flow Model," Energies, MDPI, vol. 13(21), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krystian Czernek & Michał Hyrycz & Andżelika Krupińska & Magdalena Matuszak & Marek Ochowiak & Stanisław Witczak & Sylwia Włodarczak, 2021. "State-of-the-Art Review of Effervescent-Swirl Atomizers," Energies, MDPI, vol. 14(10), pages 1-30, May.
    2. Wei Zhang & Huiren Zhu & Guangchao Li, 2020. "Experimental Study of Heat Transfer on the Internal Surfaces of a Double-Wall Structure with Pin Fin Array," Energies, MDPI, vol. 13(24), pages 1-17, December.
    3. Robert Morgan & Christian Rota & Emily Pike-Wilson & Tim Gardhouse & Cian Quinn, 2020. "The Modelling and Experimental Validation of a Cryogenic Packed Bed Regenerator for Liquid Air Energy Storage Applications," Energies, MDPI, vol. 13(19), pages 1-17, October.
    4. Thiago Rodrigo Vieira da Silva & Nilton Antonio Diniz Netto & Jeanine Costa Santos & Augusto Cesar Teixeira Malaquias & José Guilherme Coelho Baêta, 2022. "Development Procedure for Performance Estimation and Main Dimensions Calculation of a Highly-Boosted Ethanol Engine with Water Injection," Energies, MDPI, vol. 15(13), pages 1-24, June.
    5. Guodong Gai & Abdellah Hadjadj & Sergey Kudriakov & Stephane Mimouni & Olivier Thomine, 2021. "Numerical Study of Spray-Induced Turbulence Using Industrial Fire-Mitigation Nozzles," Energies, MDPI, vol. 14(4), pages 1-20, February.
    6. Parkpoom Sriromreun & Paranee Sriromreun, 2019. "A Numerical and Experimental Investigation of Dimple Effects on Heat Transfer Enhancement with Impinging Jets," Energies, MDPI, vol. 12(5), pages 1-16, March.
    7. Jaya Vignesh Madana Gopal & Robert Morgan & Guillaume De Sercey & Konstantina Vogiatzaki, 2023. "Overview of Common Thermophysical Property Modelling Approaches for Cryogenic Fluid Simulations at Supercritical Conditions," Energies, MDPI, vol. 16(2), pages 1-30, January.
    8. Simon A. Harvey & Konstantina Vogiatzaki & Guillaume de Sercey & William Redpath & Robert E. Morgan, 2021. "Starting to Unpick the Unique Air–Fuel Mixing Dynamics in the Recuperated Split Cycle Engine," Energies, MDPI, vol. 14(8), pages 1-20, April.
    9. Stanislaw Szwaja & Michal Gruca & Michal Pyrc & Romualdas Juknelevičius, 2023. "Glycerol as an Anti-Knock Additive and Secondary Fuel as a Substitute for Gasoline-Based Fuels for the IC Engine," Energies, MDPI, vol. 16(13), pages 1-15, June.
    10. Simone Ferrari & Riccardo Rossi & Annalisa Di Bernardino, 2022. "A Review of Laboratory and Numerical Techniques to Simulate Turbulent Flows," Energies, MDPI, vol. 15(20), pages 1-56, October.
    11. Roman Volkov & Timur Valiullin & Olga Vysokomornaya, 2021. "Spraying of Composite Liquid Fuels Based on Types of Coal Preparation Waste: Current Problems and Achievements: Review," Energies, MDPI, vol. 14(21), pages 1-17, November.
    12. Waldemar Fedak & Roman Ulbrich & Grzegorz Ligus & Marek Wasilewski & Szymon Kołodziej & Barbara Wasilewska & Marek Ochowiak & Sylwia Włodarczak & Andżelika Krupińska & Ivan Pavlenko, 2021. "Influence of Spray Nozzle Operating Parameters on the Fogging Process Implemented to Prevent the Spread of SARS-CoV-2 Virus," Energies, MDPI, vol. 14(14), pages 1-19, July.
    13. Zhi-Fu Zhou & Dong-Qing Zhu & Guan-Yu Lu & Bin Chen & Wei-Tao Wu & Yu-Bai Li, 2019. "Evaluation of the Performance of the Drag Force Model in Predicting Droplet Evaporation for R134a Single Droplet and Spray Characteristics for R134a Flashing Spray," Energies, MDPI, vol. 12(24), pages 1-17, December.
    14. Teuku Azuar Rizal & Khairil & Mahidin & Husni Husin & Ahmadi & Fahrizal Nasution & Hamdani Umar, 2022. "The Experimental Study of Pangium Edule Biodiesel in a High-Speed Diesel Generator for Biopower Electricity," Energies, MDPI, vol. 15(15), pages 1-15, July.
    15. Mahmoud Gadalla & Jeevananthan Kannan & Bulut Tekgül & Shervin Karimkashi & Ossi Kaario & Ville Vuorinen, 2020. "Large-Eddy Simulation of ECN Spray A: Sensitivity Study on Modeling Assumptions," Energies, MDPI, vol. 13(13), pages 1-24, July.
    16. A. V. Demidovich & S. S. Kralinova & P. P. Tkachenko & N. E. Shlegel & R. S. Volkov, 2019. "Interaction of Liquid Droplets in Gas and Vapor Flows," Energies, MDPI, vol. 12(22), pages 1-24, November.
    17. Yu, An & Tang, Qinghong & Chen, Huixiang & Zhou, Daqing, 2021. "Investigations of the thermodynamic entropy evaluation in a hydraulic turbine under various operating conditions," Renewable Energy, Elsevier, vol. 180(C), pages 1026-1043.
    18. Del Pecchia, Marco & Fontanesi, Stefano & Prager, Jens & Kralj, Cedomir & Lehtiniemi, Harry, 2020. "A threshold soot index-based fuel surrogate formulation methodology to mimic sooting tendency of real fuels in 3D-CFD simulations," Applied Energy, Elsevier, vol. 280(C).
    19. Markus Wicker & Cihan Ates & Max Okraschevski & Simon Holz & Rainer Koch & Hans-Jörg Bauer, 2023. "Modeling Multivariate Spray Characteristics with Gaussian Mixture Models," Energies, MDPI, vol. 16(19), pages 1-15, September.
    20. Mingfei Mu & Jonas Sjöblom & Henrik Ström & Xinghu Li, 2019. "Analysis of the Flow Field from Connection Cones to Monolith Reactors," Energies, MDPI, vol. 12(3), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4740-:d:412185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.