IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5676-d437388.html
   My bibliography  Save this article

Numerical Modeling of Transcritical and Supercritical Fuel Injections Using a Multi-Component Two-Phase Flow Model

Author

Listed:
  • Bittagowdanahalli Manjegowda Ningegowda

    (Department of Engineering, University of Perugia, 06125 Perugia, Italy)

  • Faniry Nadia Zazaravaka Rahantamialisoa

    (Department of Engineering, University of Perugia, 06125 Perugia, Italy)

  • Adrian Pandal

    (Departamento de Energía, Universidad de Oviedo, 33203 Gijón, Spain)

  • Hrvoje Jasak

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia)

  • Hong Geun Im

    (Clean Combustion Research Center, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia)

  • Michele Battistoni

    (Department of Engineering, University of Perugia, 06125 Perugia, Italy)

Abstract

In the present numerical study, implicit large eddy simulations (LES) of non-reacting multi-components mixing processes of cryogenic nitrogen and n-dodecane fuel injections under transcritical and supercritical conditions are carried out, using a modified reacting flow solver, originally available in the open source software OpenFOAM ® . To this end, the Peng-Robinson (PR) cubic equation of state (EOS) is considered and the solver is modified to account for the real-fluid thermodynamics. At high pressure conditions, the variable transport properties such as dynamic viscosity and thermal conductivity are accurately computed using the Chung transport model. To deal with the multicomponent species mixing, molar averaged homogeneous classical mixing rules are used. For the velocity-pressure coupling, a PIMPLE based compressible algorithm is employed. For both cryogenic and non-cryogenic fuel injections, qualitative and quantitative analyses are performed, and the results show significant effects of the chamber pressure on the mixing processes and entrainment rates. The capability of the proposed numerical model to handle multicomponent species mixing with real-fluid thermophysical properties is demonstrated, in both supercritical and transcritical regimes.

Suggested Citation

  • Bittagowdanahalli Manjegowda Ningegowda & Faniry Nadia Zazaravaka Rahantamialisoa & Adrian Pandal & Hrvoje Jasak & Hong Geun Im & Michele Battistoni, 2020. "Numerical Modeling of Transcritical and Supercritical Fuel Injections Using a Multi-Component Two-Phase Flow Model," Energies, MDPI, vol. 13(21), pages 1-27, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5676-:d:437388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaya Madana Gopal & Giovanni Tretola & Robert Morgan & Guillaume de Sercey & Andrew Atkins & Konstantina Vogiatzaki, 2020. "Understanding Sub and Supercritical Cryogenic Fluid Dynamics in Conditions Relevant to Novel Ultra Low Emission Engines," Energies, MDPI, vol. 13(12), pages 1-25, June.
    2. Zhang, Jibao & Zhang, Xin & Wang, Tao & Hou, Xiaosen, 2019. "A numerical study on jet characteristics under different supercritical conditions for engine applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Robert Keser & Alberto Ceschin & Michele Battistoni & Hong G. Im & Hrvoje Jasak, 2020. "Development of a Eulerian Multi-Fluid Solver for Dense Spray Applications in OpenFOAM," Energies, MDPI, vol. 13(18), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ba, Jin & Wei, Wu & Zhao, Lun & Gang, Xiao & Dong, Wenzhi & Zhou, Tingyu, 2023. "Numerical simulation of trans-/near-/supercritical injection characteristics based on real fluid properties," Energy, Elsevier, vol. 278(C).
    2. Sajad Jafari & Hesham Gaballa & Chaouki Habchi & Jean-Charles de Hemptinne, 2021. "Towards Understanding the Structure of Subcritical and Transcritical Liquid–Gas Interfaces Using a Tabulated Real Fluid Modeling Approach," Energies, MDPI, vol. 14(18), pages 1-38, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Morgan & Christian Rota & Emily Pike-Wilson & Tim Gardhouse & Cian Quinn, 2020. "The Modelling and Experimental Validation of a Cryogenic Packed Bed Regenerator for Liquid Air Energy Storage Applications," Energies, MDPI, vol. 13(19), pages 1-17, October.
    2. Ba, Jin & Wei, Wu & Zhao, Lun & Gang, Xiao & Dong, Wenzhi & Zhou, Tingyu, 2023. "Numerical simulation of trans-/near-/supercritical injection characteristics based on real fluid properties," Energy, Elsevier, vol. 278(C).
    3. Guodong Gai & Abdellah Hadjadj & Sergey Kudriakov & Stephane Mimouni & Olivier Thomine, 2021. "Numerical Study of Spray-Induced Turbulence Using Industrial Fire-Mitigation Nozzles," Energies, MDPI, vol. 14(4), pages 1-20, February.
    4. Jaya Vignesh Madana Gopal & Robert Morgan & Guillaume De Sercey & Konstantina Vogiatzaki, 2023. "Overview of Common Thermophysical Property Modelling Approaches for Cryogenic Fluid Simulations at Supercritical Conditions," Energies, MDPI, vol. 16(2), pages 1-30, January.
    5. Simon A. Harvey & Konstantina Vogiatzaki & Guillaume de Sercey & William Redpath & Robert E. Morgan, 2021. "Starting to Unpick the Unique Air–Fuel Mixing Dynamics in the Recuperated Split Cycle Engine," Energies, MDPI, vol. 14(8), pages 1-20, April.
    6. Robert Keser & Alberto Ceschin & Michele Battistoni & Hong G. Im & Hrvoje Jasak, 2020. "Development of a Eulerian Multi-Fluid Solver for Dense Spray Applications in OpenFOAM," Energies, MDPI, vol. 13(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5676-:d:437388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.