IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2148-d534580.html
   My bibliography  Save this article

Starting to Unpick the Unique Air–Fuel Mixing Dynamics in the Recuperated Split Cycle Engine

Author

Listed:
  • Simon A. Harvey

    (Advanced Engineering Centre, University of Brighton Cockroft Building, Lewes Road, Brighton, East Sussex BN2 4GJ, UK
    Ricardo Innovations, Shoreham Technical Centre, Shoreham-by-Sea, West Sussex BN43 5FG, UK)

  • Konstantina Vogiatzaki

    (Advanced Engineering Centre, University of Brighton Cockroft Building, Lewes Road, Brighton, East Sussex BN2 4GJ, UK)

  • Guillaume de Sercey

    (Advanced Engineering Centre, University of Brighton Cockroft Building, Lewes Road, Brighton, East Sussex BN2 4GJ, UK)

  • William Redpath

    (Advanced Manufacturing Research Centre, University of Sheffield, Sheffield S60 5TZ, UK)

  • Robert E. Morgan

    (Advanced Engineering Centre, University of Brighton Cockroft Building, Lewes Road, Brighton, East Sussex BN2 4GJ, UK)

Abstract

In this work air fuel mixing and combustion dynamics in the recuperated split cycle engine (RSCE) are investigated through new theoretical analysis and complementary optical experiments of the flow field. First, a brief introduction to the basic working principles of the RSCE cycle will be presented, followed by recent test bed results relevant to pressure traces and soot emissions. These results prompted fundamental questioning of the air-fuel mixing and combustion dynamics taking place. Hypotheses of the mixing process are then presented, with differences to that of a conventional Diesel engine highlighted. Moreover, the links of the reduced emissions, air transfer processes and enhanced atomisation are explored. Initial experimental results and Schlieren images of the air flow through the poppet valves in a flow rig are reported. The Schlieren images display shockwave and Mach disk phenomena. Demonstrating supersonic air flow in the chamber is consistent with complementary CFD work. The results from the initial experiment alone are inconclusive to suggest which of the three suggested mixing mechanism hypotheses are dominating the air–fuel dynamics in the RSCE. However, one major conclusion of this work is the proof for the presence of shockwave phenomena which are atypical of conventional engines.

Suggested Citation

  • Simon A. Harvey & Konstantina Vogiatzaki & Guillaume de Sercey & William Redpath & Robert E. Morgan, 2021. "Starting to Unpick the Unique Air–Fuel Mixing Dynamics in the Recuperated Split Cycle Engine," Energies, MDPI, vol. 14(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2148-:d:534580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Coney, M.W. & Linnemann, C. & Abdallah, H.S., 2004. "A thermodynamic analysis of a novel high efficiency reciprocating internal combustion engine—the isoengine," Energy, Elsevier, vol. 29(12), pages 2585-2600.
    2. Jaya Madana Gopal & Giovanni Tretola & Robert Morgan & Guillaume de Sercey & Andrew Atkins & Konstantina Vogiatzaki, 2020. "Understanding Sub and Supercritical Cryogenic Fluid Dynamics in Conditions Relevant to Novel Ultra Low Emission Engines," Energies, MDPI, vol. 13(12), pages 1-25, June.
    3. Dong, Guangyu & Morgan, Robert & Heikal, Morgan, 2015. "A novel split cycle internal combustion engine with integral waste heat recovery," Applied Energy, Elsevier, vol. 157(C), pages 744-753.
    4. Morgan, Robert & Dong, Guangyu & Panesar, Angad & Heikal, Morgan, 2016. "A comparative study between a Rankine cycle and a novel intra-cycle based waste heat recovery concepts applied to an internal combustion engine," Applied Energy, Elsevier, vol. 174(C), pages 108-117.
    5. Dong, Guangyu & Morgan, Robert E. & Heikal, Morgan R., 2016. "Thermodynamic analysis and system design of a novel split cycle engine concept," Energy, Elsevier, vol. 102(C), pages 576-585.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaya Madana Gopal & Giovanni Tretola & Robert Morgan & Guillaume de Sercey & Andrew Atkins & Konstantina Vogiatzaki, 2020. "Understanding Sub and Supercritical Cryogenic Fluid Dynamics in Conditions Relevant to Novel Ultra Low Emission Engines," Energies, MDPI, vol. 13(12), pages 1-25, June.
    2. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    3. Morgan, Robert & Dong, Guangyu & Panesar, Angad & Heikal, Morgan, 2016. "A comparative study between a Rankine cycle and a novel intra-cycle based waste heat recovery concepts applied to an internal combustion engine," Applied Energy, Elsevier, vol. 174(C), pages 108-117.
    4. Goyal, Harsh & Panthi, Niraj & AlRamadan, Abdullah S. & Cenker, Emre & Magnotti, Gaetano, 2023. "Analysis of energy flows and emission characteristics of conventional diesel and isobaric combustion in an optical engine with laser diagnostics," Energy, Elsevier, vol. 269(C).
    5. Dong, Guangyu & Morgan, Robert E. & Heikal, Morgan R., 2016. "Thermodynamic analysis and system design of a novel split cycle engine concept," Energy, Elsevier, vol. 102(C), pages 576-585.
    6. Robert Morgan & Christian Rota & Emily Pike-Wilson & Tim Gardhouse & Cian Quinn, 2020. "The Modelling and Experimental Validation of a Cryogenic Packed Bed Regenerator for Liquid Air Energy Storage Applications," Energies, MDPI, vol. 13(19), pages 1-17, October.
    7. Taylor, Alex M.K.P., 2008. "Science review of internal combustion engines," Energy Policy, Elsevier, vol. 36(12), pages 4657-4667, December.
    8. Haoyuan Ma & Zhan Liu, 2022. "An Engine Exhaust Utilization System by Combining CO 2 Brayton Cycle and Transcritical Organic Rankine Cycle," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    9. Jaya Vignesh Madana Gopal & Robert Morgan & Guillaume De Sercey & Konstantina Vogiatzaki, 2023. "Overview of Common Thermophysical Property Modelling Approaches for Cryogenic Fluid Simulations at Supercritical Conditions," Energies, MDPI, vol. 16(2), pages 1-30, January.
    10. Li, Yaopeng & Jia, Ming & Chang, Yachao & Kokjohn, Sage L. & Reitz, Rolf D., 2016. "Thermodynamic energy and exergy analysis of three different engine combustion regimes," Applied Energy, Elsevier, vol. 180(C), pages 849-858.
    11. Zhanar M. Orynkanova & Diana I. Stepanova, 2020. "Evaluation of the Economic Efficiency of Heat Recovery from Exhaust Gas of Diesel Power Plants in Kazakhstan," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 399-404.
    12. Yao, Zhi-Min & Qian, Zuo-Qin & Li, Rong & Hu, Eric, 2019. "Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy," Energy, Elsevier, vol. 176(C), pages 991-1006.
    13. Robert Keser & Alberto Ceschin & Michele Battistoni & Hong G. Im & Hrvoje Jasak, 2020. "Development of a Eulerian Multi-Fluid Solver for Dense Spray Applications in OpenFOAM," Energies, MDPI, vol. 13(18), pages 1-18, September.
    14. Bittagowdanahalli Manjegowda Ningegowda & Faniry Nadia Zazaravaka Rahantamialisoa & Adrian Pandal & Hrvoje Jasak & Hong Geun Im & Michele Battistoni, 2020. "Numerical Modeling of Transcritical and Supercritical Fuel Injections Using a Multi-Component Two-Phase Flow Model," Energies, MDPI, vol. 13(21), pages 1-27, October.
    15. Alshammari, Fuhaid & Pesyridis, Apostolos & Karvountzis-Kontakiotis, Apostolos & Franchetti, Ben & Pesmazoglou, Yagos, 2018. "Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance," Applied Energy, Elsevier, vol. 215(C), pages 543-555.
    16. Zhang, Xinjing & Xu, Yujie & Zhou, Xuezhi & Zhang, Yi & Li, Wen & Zuo, Zhitao & Guo, Huan & Huang, Ye & Chen, Haisheng, 2018. "A near-isothermal expander for isothermal compressed air energy storage system," Applied Energy, Elsevier, vol. 225(C), pages 955-964.
    17. Tan, Jingqi & Wei, Jianjian & Jin, Tao, 2020. "Electrical-analogy network model of a modified two-phase thermofluidic oscillator with regenerator for low-grade heat recovery," Applied Energy, Elsevier, vol. 262(C).
    18. Dong, Guangyu & Morgan, Robert & Heikal, Morgan, 2015. "A novel split cycle internal combustion engine with integral waste heat recovery," Applied Energy, Elsevier, vol. 157(C), pages 744-753.
    19. Jaber, Hassan & Khaled, Mahmoud & Lemenand, Thierry & Murr, Rabih & Faraj, Jalal & Ramadan, Mohamad, 2019. "Domestic thermoelectric cogeneration drying system: Thermal modeling and case study," Energy, Elsevier, vol. 170(C), pages 1036-1050.
    20. Halis, Serdar & Doğan, Battal, 2023. "Effects of intake air temperature on energy, exergy and sustainability analyses in an RCCI engine fueled with iso-propanol and n-heptane," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2148-:d:534580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.