IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4491-d406887.html
   My bibliography  Save this article

Development of Simulation Tool for Ground Source Heat Pump Systems Influenced by Ground Surface

Author

Listed:
  • Takao Katsura

    (Faculty of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628, Japan)

  • Yoshitaka Sakata

    (Faculty of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628, Japan)

  • Lan Ding

    (Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628, Japan)

  • Katsunori Nagano

    (Faculty of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628, Japan)

Abstract

The authors developed a ground heat exchanger (GHE) calculation model influenced by the ground surface by applying the superposition theorem. Furthermore, a simulation tool for ground source heat pump (GSHP) systems affected by ground surface was developed by combining the GHE calculation model with the simulation tool for GSHP systems that the authors previously developed. In this paper, the outlines of GHE calculation model is explained. Next, in order to validate the calculation precision of the tool, a thermal response test (TRT) was carried out using a borehole GHE with a length of 30 m and the outlet temperature of the GHE calculated using the tool was compared to the measured one. The relative error between the temperatures of the heat carrier fluid in the GHE obtained by measurement and calculation was 3.3% and this result indicated that the tool can reproduce the measurement with acceptable precision. In addition, the authors assumed that the GSHP system was installed in residential houses and predicted the performances of GSHP systems using the GHEs with different lengths and numbers, but the same total length. The result showed that the average surface temperature of GHE with a length of 10 m becomes approximately 2 °C higher than the average surface temperature of a GHE with a length of 100 m in August.

Suggested Citation

  • Takao Katsura & Yoshitaka Sakata & Lan Ding & Katsunori Nagano, 2020. "Development of Simulation Tool for Ground Source Heat Pump Systems Influenced by Ground Surface," Energies, MDPI, vol. 13(17), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4491-:d:406887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4491/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4491/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zarrella, Angelo & De Carli, Michele, 2013. "Heat transfer analysis of short helical borehole heat exchangers," Applied Energy, Elsevier, vol. 102(C), pages 1477-1491.
    2. Xiong, Zeyu & Fisher, Daniel E. & Spitler, Jeffrey D., 2015. "Development and validation of a Slinky™ ground heat exchanger model," Applied Energy, Elsevier, vol. 141(C), pages 57-69.
    3. Takao Katsura & Takashi Higashitani & Yuzhi Fang & Yoshitaka Sakata & Katsunori Nagano & Hitoshi Akai & Motoaki OE, 2020. "A New Simulation Model for Vertical Spiral Ground Heat Exchangers Combining Cylindrical Source Model and Capacity Resistance Model," Energies, MDPI, vol. 13(6), pages 1-17, March.
    4. Zarrella, Angelo & Capozza, Antonio & De Carli, Michele, 2013. "Analysis of short helical and double U-tube borehole heat exchangers: A simulation-based comparison," Applied Energy, Elsevier, vol. 112(C), pages 358-370.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    2. Lopez-Pascual, D. & Valiente-Blanco, I. & Fernandez-Munoz, M. & Diez-Jimenez, E., 2023. "Theoretical modelling and optimization of a geothermal cooling system for solar photovoltaics," Renewable Energy, Elsevier, vol. 206(C), pages 357-366.
    3. Tomasz Janusz Teleszewski & Dorota Anna Krawczyk & Jose María Fernandez-Rodriguez & Angélica Lozano-Lunar & Antonio Rodero, 2022. "The Study of Soil Temperature Distribution for Very Low-Temperature Geothermal Energy Applications in Selected Locations of Temperate and Subtropical Climate," Energies, MDPI, vol. 15(9), pages 1-19, May.
    4. Joanna Piotrowska-Woroniak, 2021. "Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests," Energies, MDPI, vol. 14(9), pages 1-21, April.
    5. Joanna Piotrowska-Woroniak & Tomasz Szul & Grzegorz Woroniak, 2023. "Application of a Model Based on Rough Set Theory (RST) for Estimating the Temperature of Brine from Vertical Ground Heat Exchangers (VGHE) Operated with a Heat Pump—A Case Study," Energies, MDPI, vol. 16(20), pages 1-12, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    2. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    3. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & McLennan, John & Forbes, Bryan & Li, Xiaojiang & Li, Jiacheng, 2019. "Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system," Applied Energy, Elsevier, vol. 249(C), pages 14-27.
    4. Pasquier, Philippe, 2018. "Interpretation of the first hours of a thermal response test using the time derivative of the temperature," Applied Energy, Elsevier, vol. 213(C), pages 56-75.
    5. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    6. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
    7. Kou, Huaqin & Luo, Wenhua & Huang, Zhiyong & Sang, Ge & Meng, Daqiao & Zhang, Guanghui & Chen, Changan & Luo, Deli & Hu, Changwen, 2015. "Fabrication and experimental validation of a full-scale depleted uranium bed with thin double-layered annulus configuration for hydrogen isotopes recovery and delivery," Energy, Elsevier, vol. 90(P1), pages 588-594.
    8. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    9. Wu, Zhen & Yang, Fusheng & Zhang, Zaoxiao & Bao, Zewei, 2014. "Magnesium based metal hydride reactor incorporating helical coil heat exchanger: Simulation study and optimal design," Applied Energy, Elsevier, vol. 130(C), pages 712-722.
    10. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
    11. Shuyang Tu & Xiuqin Yang & Xiang Zhou & Maohui Luo & Xu Zhang, 2019. "Experimenting and Modeling Thermal Performance of Ground Heat Exchanger Under Freezing Soil Conditions," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    12. Cristina Sáez Blázquez & Arturo Farfán Martín & Ignacio Martín Nieto & Pedro Carrasco García & Luis Santiago Sánchez Pérez & Diego González-Aguilera, 2017. "Efficiency Analysis of the Main Components of a Vertical Closed-Loop System in a Borehole Heat Exchanger," Energies, MDPI, vol. 10(2), pages 1-15, February.
    13. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
    14. Farzaneh-Gord, Mahmood & Ghezelbash, Reza & Sadi, Meisam & Moghadam, Ali Jabari, 2016. "Integration of vertical ground-coupled heat pump into a conventional natural gas pressure drop station: Energy, economic and CO2 emission assessment," Energy, Elsevier, vol. 112(C), pages 998-1014.
    15. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    16. Ghezelbash, Reza & Farzaneh-Gord, Mahmood & Behi, Hamidreza & Sadi, Meisam & Khorramabady, Heshmatollah Shams, 2015. "Performance assessment of a natural gas expansion plant integrated with a vertical ground-coupled heat pump," Energy, Elsevier, vol. 93(P2), pages 2503-2517.
    17. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    18. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    19. Zhi, Chengqiang & Yang, Xiuqin & Zhou, Xiang & Tu, Shuyang & Zhang, Xu, 2022. "A revised sizing method for borehole heat exchangers in the Chinese national standard based on reliability and economy," Renewable Energy, Elsevier, vol. 191(C), pages 17-29.
    20. Kou, Huaqin & Huang, Zhiyong & Luo, Wenhua & Sang, Ge & Meng, Daqiao & Luo, Deli & Zhang, Guanghui & Chen, Hao & Zhou, Ying & Hu, Changwen, 2015. "Experimental study on full-scale ZrCo and depleted uranium beds applied for fast recovery and delivery of hydrogen isotopes," Applied Energy, Elsevier, vol. 145(C), pages 27-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4491-:d:406887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.