IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3304-d377374.html
   My bibliography  Save this article

Adaptable Source-Grid Planning for High Penetration of Renewable Energy Integrated System

Author

Listed:
  • Ming Tang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Jian Wang

    (Tsinghua Sichuan Energy Internet Research Institute, Chengdu 610213, China)

  • Xiaohua Wang

    (Tsinghua Sichuan Energy Internet Research Institute, Chengdu 610213, China)

Abstract

To adapt to the growing scale of renewable energy and improve the consume ability of the power system, it is necessary to design a highly adaptable planning scheme for high penetration of the renewable energy integrated system. Thus, this paper firstly gives the conception of system adaptability and designs an adaptability index system, which considers the supply and demand balance, operation state, and network structure of the high penetrated renewable energy integrated system. It can help to comprehensively evaluate the system ability towards uncertain shocks. Then, a two-stage source-grid coordinative expansion planning model is presented. The adaptability indexes of supply and demand balance are used as objection of the source planning stage, the adaptability indexed of the operation state and network structure are used to guide the grid planning stage. The model is further solved based on the coordination between the source and grid planning stage. Finally, the case study verifies that the obtained optimal plan has good adaptability to the impact of renewable energy on the power supply capacity and security operation.

Suggested Citation

  • Ming Tang & Jian Wang & Xiaohua Wang, 2020. "Adaptable Source-Grid Planning for High Penetration of Renewable Energy Integrated System," Energies, MDPI, vol. 13(13), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3304-:d:377374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3304/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dai, Wei & Yang, Zhifang & Yu, Juan & Zhao, Ke & Wen, Shiyang & Lin, Wei & Li, Wenyuan, 2019. "Security region of renewable energy integration: Characterization and flexibility," Energy, Elsevier, vol. 187(C).
    2. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    3. Siqing Sheng & Qing Gu, 2019. "A Day-ahead and Day-in Decision Model Considering the Uncertainty of Multiple Kinds of Demand Response," Energies, MDPI, vol. 12(9), pages 1-26, May.
    4. Saad Ullah Khan & Khawaja Khalid Mehmood & Zunaib Maqsood Haider & Muhammad Kashif Rafique & Chul-Hwan Kim, 2018. "A Bi-Level EV Aggregator Coordination Scheme for Load Variance Minimization with Renewable Energy Penetration Adaptability," Energies, MDPI, vol. 11(10), pages 1-28, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhong Wang & Xu Zhou & Yunxiang Shi & Zongsheng Zheng & Qi Zeng & Lei Chen & Bo Xiang & Rui Huang, 2021. "Transmission Network Expansion Planning Considering Wind Power and Load Uncertainties Based on Multi-Agent DDQN," Energies, MDPI, vol. 14(19), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    2. Lin, Wei & Jiang, Hua & Jian, Haojun & Xue, Jingwei & Wu, Jianghua & Wang, Chongyu & Lin, Zhenjia, 2023. "High-dimension tie-line security regions for renewable accommodations," Energy, Elsevier, vol. 270(C).
    3. Song, Chenhui & Xiao, Jun & Zu, Guoqiang & Hao, Ziyuan & Zhang, Xinsong, 2021. "Security region of natural gas pipeline network system: Concept, method and application," Energy, Elsevier, vol. 217(C).
    4. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Kyuho Maeng & Sungmin Ko & Jungwoo Shin & Youngsang Cho, 2020. "How Much Electricity Sharing Will Electric Vehicle Owners Allow from Their Battery? Incorporating Vehicle-to-Grid Technology and Electricity Generation Mix," Energies, MDPI, vol. 13(16), pages 1-25, August.
    6. Piotr Żuk & Paweł Żuk, 2021. "On the Socio-Cultural Determinants of Polish Entrepreneurs’ Attitudes towards the Development of Renewable Energy: Business, Climate Skepticism Ideology and Climate Change," Energies, MDPI, vol. 14(12), pages 1-16, June.
    7. Tianliang Wang & Xin Jiang & Yang Jin & Dawei Song & Meng Yang & Qingshan Zeng, 2019. "Peaking Compensation Mechanism for Thermal Units and Virtual Peaking Plants Union Promoting Curtailed Wind Power Integration," Energies, MDPI, vol. 12(17), pages 1-20, August.
    8. Su, Chengguo & Wang, Peilin & Yuan, Wenlin & Wu, Yang & Jiang, Feng & Wu, Zening & Yan, Denghua, 2022. "Short-term optimal scheduling of cascade hydropower plants with reverse-regulating effects," Renewable Energy, Elsevier, vol. 199(C), pages 395-406.
    9. Saad Ullah Khan & Khawaja Khalid Mehmood & Zunaib Maqsood Haider & Muhammad Kashif Rafique & Muhammad Omer Khan & Chul-Hwan Kim, 2021. "Coordination of Multiple Electric Vehicle Aggregators for Peak Shaving and Valley Filling in Distribution Feeders," Energies, MDPI, vol. 14(2), pages 1-16, January.
    10. Amir Ali Safaei Pirooz & Mohammad J. Sanjari & Young-Jin Kim & Stuart Moore & Richard Turner & Wayne W. Weaver & Dipti Srinivasan & Josep M. Guerrero & Mohammad Shahidehpour, 2023. "Adaptation of High Spatio-Temporal Resolution Weather/Load Forecast in Real-World Distributed Energy-System Operation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    11. Avri Eitan, 2023. "The Impact of Renewable Energy Targets on Natural Gas Export Policy: Lessons from the Israeli Case," Resources, MDPI, vol. 12(2), pages 1-15, February.
    12. Andrey Rogalev & Nikolay Rogalev & Vladimir Kindra & Olga Zlyvko & Andrey Vegera, 2021. "A Study of Low-Potential Heat Utilization Methods for Oxy-Fuel Combustion Power Cycles," Energies, MDPI, vol. 14(12), pages 1-14, June.
    13. Yilu Wang & Zixuan Jia & Jianing Li & Xiaoping Zhang & Ray Zhang, 2021. "Optimal Bi-Level Scheduling Method of Vehicle-to-Grid and Ancillary Services of Aggregators with Conditional Value-at-Risk," Energies, MDPI, vol. 14(21), pages 1-16, October.
    14. Liu, Liu & Wang, Dan & Hou, Kai & Jia, Hong-jie & Li, Si-yuan, 2020. "Region model and application of regional integrated energy system security analysis," Applied Energy, Elsevier, vol. 260(C).
    15. Motta, Vinicius N. & Anjos, Miguel F. & Gendreau, Michel, 2024. "Survey of optimization models for power system operation and expansion planning with demand response," European Journal of Operational Research, Elsevier, vol. 312(2), pages 401-412.
    16. Dai, Wei & Yang, Zhifang & Yu, Juan & Cui, Wei & Li, Wenyuan & Li, Jinghua & Liu, Hui, 2021. "Economic dispatch of interconnected networks considering hidden flexibility," Energy, Elsevier, vol. 223(C).
    17. Guo, Zheyu & Zheng, Yanan & Li, Gengyin, 2020. "Power system flexibility quantitative evaluation based on improved universal generating function method: A case study of Zhangjiakou," Energy, Elsevier, vol. 205(C).
    18. Liu, Hong & Cao, Yuchen & Ge, Shaoyun & Xu, Zhengyang & Gu, Chenghong & He, Xingtang, 2022. "Load carrying capability of regional electricity-heat energy systems: Definitions, characteristics, and optimal value evaluation," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3304-:d:377374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.