IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2442-d357328.html
   My bibliography  Save this article

Causes of Quality Failures in Building Energy Renovation Projects of Northern China: A Review and Empirical Study

Author

Listed:
  • Yuting Qi

    (Faculty of Architecture and the Built Environment, Delft University of Technology, Julianalaan 134, 2628BL Delft, The Netherlands)

  • Queena Qian

    (Faculty of Architecture and the Built Environment, Delft University of Technology, Julianalaan 134, 2628BL Delft, The Netherlands)

  • Frits Meijer

    (Faculty of Architecture and the Built Environment, Delft University of Technology, Julianalaan 134, 2628BL Delft, The Netherlands)

  • Henk Visscher

    (Faculty of Architecture and the Built Environment, Delft University of Technology, Julianalaan 134, 2628BL Delft, The Netherlands)

Abstract

Building energy renovations can effectively improve the environmental performance and energy sustainability of existing buildings. From 2007 onwards, the Chinese government has promoted energy-saving renovations of existing urban residential buildings. Nevertheless, various quality failures happen during the construction period in energy-saving renovation projects of residential buildings. Yet, the causes and their characters remain largely unknown. Through a literature review, this paper investigates the causes of quality failures. Validated through experts’ interviews, a total of 18 causes were identified in building energy renovation projects. These causes were analyzed from two main aspects: the importance of a cause (related to impact and frequency), and the level of effort required to address a cause (related to origin and scale), using both a questionnaire survey and a focus group. The results indicate that the critical causes of quality failures are working under high-cost and high-time pressure, adverse natural conditions, fraud of construction companies, incomplete construction site survey, poor checking procedures of supervisors, poor operational skilled workers, inadequate equipment performance, lack of experienced project managers, and incomplete building information in projects. The causes were classified as external and internal causes of building energy renovation projects. The outcome of this paper should aid policy makers and project coordinators to focus on critical causes of quality failures, and to develop effective actions and policy interventions to achieve successful renovation projects with high-quality performance.

Suggested Citation

  • Yuting Qi & Queena Qian & Frits Meijer & Henk Visscher, 2020. "Causes of Quality Failures in Building Energy Renovation Projects of Northern China: A Review and Empirical Study," Energies, MDPI, vol. 13(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2442-:d:357328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kong, Xiangfei & Lu, Shilei & Wu, Yong, 2012. "A review of building energy efficiency in China during “Eleventh Five-Year Plan” period," Energy Policy, Elsevier, vol. 41(C), pages 624-635.
    2. Sooyoun Cho & Jeehang Lee & Jumi Baek & Gi-Seok Kim & Seung-Bok Leigh, 2019. "Investigating Primary Factors Affecting Electricity Consumption in Non-Residential Buildings Using a Data-Driven Approach," Energies, MDPI, vol. 12(21), pages 1-23, October.
    3. B. Sudhakara Reddy & Gaudenz Assenza, 2007. "Barriers and Drivers to Energy Efficiency - A new Taxonomical Approach," Development Economics Working Papers 22348, East Asian Bureau of Economic Research.
    4. Alencastro, João & Fuertes, Alba & de Wilde, Pieter, 2018. "The relationship between quality defects and the thermal performance of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 883-894.
    5. Xu, Peng & Xu, Tengfang & Shen, Pengyuan, 2013. "Energy and behavioral impacts of integrative retrofits for residential buildings: What is at stake for building energy policy reforms in northern China?," Energy Policy, Elsevier, vol. 52(C), pages 667-676.
    6. Li, Meng & Zhao, Jing & Zhu, Neng, 2013. "Method of checking and certifying carbon trading volume of existing buildings retrofits in China," Energy Policy, Elsevier, vol. 61(C), pages 1178-1187.
    7. Lara Chaplin & Simon T.J. O’Rourke, 2014. "Lean Six Sigma and marketing: a missed opportunity," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 63(5), pages 665-674, June.
    8. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    9. Mosannenzadeh, Farnaz & Di Nucci, Maria Rosaria & Vettorato, Daniele, 2017. "Identifying and prioritizing barriers to implementation of smart energy city projects in Europe: An empirical approach," Energy Policy, Elsevier, vol. 105(C), pages 191-201.
    10. Kylili, Angeliki & Fokaides, Paris A. & Lopez Jimenez, Petra Amparo, 2016. "Key Performance Indicators (KPIs) approach in buildings renovation for the sustainability of the built environment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 906-915.
    11. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    12. Wu, Jing & Zuidema, Christian & Gugerell, Katharina & de Roo, Gert, 2017. "Mind the gap! Barriers and implementation deficiencies of energy policies at the local scale in urban China," Energy Policy, Elsevier, vol. 106(C), pages 201-211.
    13. Yuting Qi & Queena K. Qian & Frits M. Meijer & Henk J. Visscher, 2019. "Identification of Quality Failures in Building Energy Renovation Projects in Northern China," Sustainability, MDPI, vol. 11(15), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sofía Mulero-Palencia & Sonia Álvarez-Díaz & Manuel Andrés-Chicote, 2021. "Machine Learning for the Improvement of Deep Renovation Building Projects Using As-Built BIM Models," Sustainability, MDPI, vol. 13(12), pages 1-29, June.
    2. Giuseppe Salvia & Eugenio Morello & Federica Rotondo & Andrea Sangalli & Francesco Causone & Silvia Erba & Lorenzo Pagliano, 2020. "Performance Gap and Occupant Behavior in Building Retrofit: Focus on Dynamics of Change and Continuity in the Practice of Indoor Heating," Sustainability, MDPI, vol. 12(14), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuting Qi & Queena K. Qian & Frits M. Meijer & Henk J. Visscher, 2019. "Identification of Quality Failures in Building Energy Renovation Projects in Northern China," Sustainability, MDPI, vol. 11(15), pages 1-23, August.
    2. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    3. Liu, Wenling & Zhang, Jinyun & Bluemling, Bettina & Mol, Arthur P.J. & Wang, Can, 2015. "Public participation in energy saving retrofitting of residential buildings in China," Applied Energy, Elsevier, vol. 147(C), pages 287-296.
    4. Wang, Xiaotong & Lu, Meijun & Mao, Wei & Ouyang, Jinlong & Zhou, Bo & Yang, Yunkai, 2015. "Improving benefit-cost analysis to overcome financing difficulties in promoting energy-efficient renovation of existing residential buildings in China," Applied Energy, Elsevier, vol. 141(C), pages 119-130.
    5. Kheira Anissa Tabet Aoul & Rahma Hagi & Rahma Abdelghani & Monaya Syam & Boshra Akhozheya, 2021. "Building Envelope Thermal Defects in Existing and Under-Construction Housing in the UAE; Infrared Thermography Diagnosis and Qualitative Impacts Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    6. Liu, Zhongbing & Zhang, Yelin & Zhang, Ling & Luo, Yongqiang & Wu, Zhenghong & Wu, Jing & Yin, Yingde & Hou, Guoqing, 2018. "Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system," Applied Energy, Elsevier, vol. 228(C), pages 1887-1900.
    7. Francesco Mancini & Gianluigi Lo Basso & Livio de Santoli, 2019. "Energy Use in Residential Buildings: Impact of Building Automation Control Systems on Energy Performance and Flexibility," Energies, MDPI, vol. 12(15), pages 1-21, July.
    8. Du, Ping & Zheng, Li-Qun & Xie, Bai-Chen & Mahalingam, Arjun, 2014. "Barriers to the adoption of energy-saving technologies in the building sector: A survey study of Jing-jin-tang, China," Energy Policy, Elsevier, vol. 75(C), pages 206-216.
    9. Møller Sneum, Daniel, 2021. "Barriers to flexibility in the district energy-electricity system interface – A taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Noor Jalo & Ida Johansson & Mariana Andrei & Therese Nehler & Patrik Thollander, 2021. "Barriers to and Drivers of Energy Management in Swedish SMEs," Energies, MDPI, vol. 14(21), pages 1-21, October.
    11. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    12. Costa-Campi, María Teresa & García-Quevedo, José & Segarra, Agustí, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Energy Policy, Elsevier, vol. 83(C), pages 229-239.
    13. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    14. Ida Johansson & Nawzad Mardan & Erwin Cornelis & Osamu Kimura & Patrik Thollander, 2019. "Designing Policies and Programmes for Improved Energy Efficiency in Industrial SMEs," Energies, MDPI, vol. 12(7), pages 1-17, April.
    15. Bhatt, Brijesh & Singh, Anoop, 2021. "Power sector reforms and technology adoption in the Indian electricity distribution sector," Energy, Elsevier, vol. 215(PA).
    16. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    17. Liu, Guo & Li, Xiaohu & Tan, Yongtao & Zhang, Guomin, 2020. "Building green retrofit in China: Policies, barriers and recommendations," Energy Policy, Elsevier, vol. 139(C).
    18. Chowdhury, Jahedul Islam & Hu, Yukun & Haltas, Ismail & Balta-Ozkan, Nazmiye & Matthew, George Jr. & Varga, Liz, 2018. "Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1153-1178.
    19. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    20. Costa-Campi, María Teresa & García-Quevedo, José & Segarra, Agustí, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Energy Policy, Elsevier, vol. 83(C), pages 229-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2442-:d:357328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.