IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1508-d224763.html
   My bibliography  Save this article

Active Power Dispatch for Supporting Grid Frequency Regulation in Wind Farms Considering Fatigue Load

Author

Listed:
  • Yingming Liu

    (Institute of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

  • Yingwei Wang

    (Institute of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

  • Xiaodong Wang

    (Institute of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

  • Jiangsheng Zhu

    (Energy Department of Technology, Aalborg University, 6700 Esbjerg, Denmark)

  • Wai Hou Lio

    (Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark)

Abstract

This paper proposes an active power control method for supporting grid frequency regulation in wind farms (WF) considering improved fatigue load sensitivity of wind turbines (WT). The control method is concluded into two parts: frequency adjustment control (FAC) and power reference dispatch (PRD). On one hand, the proposed Fuzzy-PID control method can actively maintain the balance between power generation and grid load, by which the grid frequency is regulated when plenty of winds are available. The fast power response can be provided and frequency error can be reduced by the proposed method. On the other hand, the sensitivity of the WT fatigue loads to the power references is improved. The explicit analytical equations of the fatigue load sensitivity are re-derived to improve calculation accuracy. In the process of the optimization dispatch, the re-defined fatigue load sensitivity will be used to minimize fatigue load. Case studies were conducted with a WF under different grid loads and turbulent wind with different intensities. By comparing the frequency response of the WF, rainflow cycle, and Damage Equivalent Load (DEL) of the WT, the efficacy of the proposed method is verified.

Suggested Citation

  • Yingming Liu & Yingwei Wang & Xiaodong Wang & Jiangsheng Zhu & Wai Hou Lio, 2019. "Active Power Dispatch for Supporting Grid Frequency Regulation in Wind Farms Considering Fatigue Load," Energies, MDPI, vol. 12(8), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1508-:d:224763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Dijk, Mike T. & van Wingerden, Jan-Willem & Ashuri, Turaj & Li, Yaoyu, 2017. "Wind farm multi-objective wake redirection for optimizing power production and loads," Energy, Elsevier, vol. 121(C), pages 561-569.
    2. Jonas Kazda & Nicolaos Antonio Cutululis, 2018. "Fast Control-Oriented Dynamic Linear Model of Wind Farm Flow and Operation," Energies, MDPI, vol. 11(12), pages 1-19, November.
    3. Cao-Khang Nguyen & Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2018. "Consensus-Based SOC Balancing of Battery Energy Storage Systems in Wind Farm," Energies, MDPI, vol. 11(12), pages 1-15, December.
    4. You, Rui & Barahona, Braulio & Chai, Jianyun & Cutululis, Nicolaos A. & Wu, Xinzhen, 2017. "Improvement of grid frequency dynamic characteristic with novel wind turbine based on electromagnetic coupler," Renewable Energy, Elsevier, vol. 113(C), pages 813-821.
    5. Bohao Sun & Yong Tang & Lin Ye & Chaoyu Chen & Cihang Zhang & Wuzhi Zhong, 2018. "A Frequency Control Strategy Considering Large Scale Wind Power Cluster Integration Based on Distributed Model Predictive Control," Energies, MDPI, vol. 11(6), pages 1-19, June.
    6. Francesco Bottiglione & Giacomo Mantriota & Marco Valle, 2018. "Power-Split Hydrostatic Transmissions for Wind Energy Systems," Energies, MDPI, vol. 11(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew Cole & David Campos-Gaona & Adam Stock & Marcel Nedd, 2023. "A Critical Review of Current and Future Options for Wind Farm Participation in Ancillary Service Provision," Energies, MDPI, vol. 16(3), pages 1-18, January.
    2. Georgios Gasparis & Wai Hou Lio & Fanzhong Meng, 2020. "Surrogate Models for Wind Turbine Electrical Power and Fatigue Loads in Wind Farm," Energies, MDPI, vol. 13(23), pages 1-15, December.
    3. Xingkang Jin & Wen Tan & Yarong Zou & Zijian Wang, 2022. "Active Disturbance Rejection Control for Wind Turbine Fatigue Load," Energies, MDPI, vol. 15(17), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. He, Ruiyang & Yang, Hongxing & Lu, Lin, 2023. "Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control," Applied Energy, Elsevier, vol. 337(C).
    3. Ganggang Tu & Yanjun Li & Ji Xiang, 2019. "Analysis, Control and Optimal Placement of Static Synchronous Compensator with/without Battery Energy Storage," Energies, MDPI, vol. 12(24), pages 1-20, December.
    4. Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
    5. Dou, Bingzheng & Qu, Timing & Lei, Liping & Zeng, Pan, 2020. "Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model," Energy, Elsevier, vol. 209(C).
    6. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
    7. Mou Lin & Fernando Porté-Agel, 2023. "Power Production and Blade Fatigue of a Wind Turbine Array Subjected to Active Yaw Control," Energies, MDPI, vol. 16(6), pages 1-17, March.
    8. Francesco Castellani & Marco Buzzoni & Davide Astolfi & Gianluca D’Elia & Giorgio Dalpiaz & Ludovico Terzi, 2017. "Wind Turbine Loads Induced by Terrain and Wakes: An Experimental Study through Vibration Analysis and Computational Fluid Dynamics," Energies, MDPI, vol. 10(11), pages 1-19, November.
    9. Su-Been Hong & Thai-Thanh Nguyen & Jinhong Jeon & Hak-Man Kim, 2020. "Distributed Operation of Microgrids Considering Secondary Frequency Restoration Based on the Diffusion Algorithm," Energies, MDPI, vol. 13(12), pages 1-14, June.
    10. van der Hoek, Daan & Kanev, Stoyan & Allin, Julian & Bieniek, David & Mittelmeier, Niko, 2019. "Effects of axial induction control on wind farm energy production - A field test," Renewable Energy, Elsevier, vol. 140(C), pages 994-1003.
    11. Shibuya, Koichiro & Uchida, Takanori, 2023. "Wake asymmetry of yaw state wind turbines induced by interference with wind towers," Energy, Elsevier, vol. 280(C).
    12. He, Ruiyang & Yang, Hongxing & Sun, Shilin & Lu, Lin & Sun, Haiying & Gao, Xiaoxia, 2022. "A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control," Applied Energy, Elsevier, vol. 326(C).
    13. Qian, Guo-Wei & Ishihara, Takeshi, 2021. "Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity," Energy, Elsevier, vol. 220(C).
    14. Padullaparthi, Venkata Ramakrishna & Nagarathinam, Srinarayana & Vasan, Arunchandar & Menon, Vishnu & Sudarsanam, Depak, 2022. "FALCON- FArm Level CONtrol for wind turbines using multi-agent deep reinforcement learning," Renewable Energy, Elsevier, vol. 181(C), pages 445-456.
    15. Xu, Zongyuan & Gao, Xiaoxia & Zhang, Huanqiang & Lv, Tao & Han, Zhonghe & Zhu, Xiaoxun & Wang, Yu, 2023. "Analysis of the anisotropy aerodynamic characteristics of downstream wind turbine considering the 3D wake expansion based on coupling method," Energy, Elsevier, vol. 263(PD).
    16. Kanev, Stoyan, 2020. "Dynamic wake steering and its impact on wind farm power production and yaw actuator duty," Renewable Energy, Elsevier, vol. 146(C), pages 9-15.
    17. Moreno, Sinvaldo Rodrigues & Pierezan, Juliano & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2021. "Multi-objective lightning search algorithm applied to wind farm layout optimization," Energy, Elsevier, vol. 216(C).
    18. Aviad Navon & Gefen Ben Yosef & Ram Machlev & Shmuel Shapira & Nilanjan Roy Chowdhury & Juri Belikov & Ariel Orda & Yoash Levron, 2020. "Applications of Game Theory to Design and Operation of Modern Power Systems: A Comprehensive Review," Energies, MDPI, vol. 13(15), pages 1-35, August.
    19. Sun, Jili & Chen, Zheng & Yu, Hao & Gao, Shan & Wang, Bin & Ying, You & Sun, Yong & Qian, Peng & Zhang, Dahai & Si, Yulin, 2022. "Quantitative evaluation of yaw-misalignment and aerodynamic wake induced fatigue loads of offshore Wind turbines," Renewable Energy, Elsevier, vol. 199(C), pages 71-86.
    20. Min-Rong Chen & Guo-Qiang Zeng & Yu-Xing Dai & Kang-Di Lu & Da-Qiang Bi, 2018. "Fractional-Order Model Predictive Frequency Control of an Islanded Microgrid," Energies, MDPI, vol. 12(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1508-:d:224763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.