IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2542-d1090848.html
   My bibliography  Save this article

Power Production and Blade Fatigue of a Wind Turbine Array Subjected to Active Yaw Control

Author

Listed:
  • Mou Lin

    (Wind Engineering and Renewable Energy Laboratory (WiRE), École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ENAC-IIE-WIRE, 1015 Lausanne, Switzerland)

  • Fernando Porté-Agel

    (Wind Engineering and Renewable Energy Laboratory (WiRE), École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ENAC-IIE-WIRE, 1015 Lausanne, Switzerland)

Abstract

This study investigated the power production and blade fatigue of a three-turbine array subjected to active yaw control (AYC) in full-wake and partial-wake configurations. A framework of a two-way coupled large eddy simulation (LES) and an aeroelastic blade simulation was applied to simulate the atmospheric boundary layer (ABL) flow through the turbines and the structural responses of the blades. The mean power outputs and blade fatigue loads were extracted from the simulation results. By exploring the feasible AYC decision space, we found that in the full-wake configuration, the local power-optimal AYC strategy with positive yaw angles endures less flapwise blade fatigue and more edgewise blade fatigue than the global power-optimal strategy. In the partial-wake configuration, applying positive AYC in certain inflow wind directions achieves higher optimal power gains than that in the full-wake scenario and reduces blade fatigue from the non-yawed benchmark. Using the blade element momentum (BEM) theory, we reveal that the aforementioned differences in flapwise blade fatigue are due to the differences in the azimuthal distributions of the local relative velocity on blade sections, resulting from the vertical wind shear and blade rotation. Furthermore, the difference in the blade force between the positively and negatively yawed front-row turbine induces different wake velocities and turbulence distributions, causing different fatigue loads on the downwind turbine exposed to the wake.

Suggested Citation

  • Mou Lin & Fernando Porté-Agel, 2023. "Power Production and Blade Fatigue of a Wind Turbine Array Subjected to Active Yaw Control," Energies, MDPI, vol. 16(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2542-:d:1090848
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng, Hang & Lien, Fue-Sang & Li, Li, 2018. "Elastic actuator line modelling for wake-induced fatigue analysis of horizontal axis wind turbine blade," Renewable Energy, Elsevier, vol. 116(PA), pages 423-437.
    2. van Dijk, Mike T. & van Wingerden, Jan-Willem & Ashuri, Turaj & Li, Yaoyu, 2017. "Wind farm multi-objective wake redirection for optimizing power production and loads," Energy, Elsevier, vol. 121(C), pages 561-569.
    3. Wu, Yu-Ting & Porté-Agel, Fernando, 2015. "Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm," Renewable Energy, Elsevier, vol. 75(C), pages 945-955.
    4. Mou Lin & Fernando Porté-Agel, 2019. "Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind Tunnel Measurements and Analytical Wake Models," Energies, MDPI, vol. 12(23), pages 1-18, November.
    5. Fleming, Paul A. & Gebraad, Pieter M.O. & Lee, Sang & van Wingerden, Jan-Willem & Johnson, Kathryn & Churchfield, Matt & Michalakes, John & Spalart, Philippe & Moriarty, Patrick, 2014. "Evaluating techniques for redirecting turbine wakes using SOWFA," Renewable Energy, Elsevier, vol. 70(C), pages 211-218.
    6. Wim Munters & Johan Meyers, 2018. "Dynamic Strategies for Yaw and Induction Control of Wind Farms Based on Large-Eddy Simulation and Optimization," Energies, MDPI, vol. 11(1), pages 1-32, January.
    7. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alina Fazylova & Baurzhan Tultayev & Teodor Iliev & Ivaylo Stoyanov & Ivan Beloev, 2023. "Development of a Control Unit for the Angle of Attack of a Vertically Axial Wind Turbine," Energies, MDPI, vol. 16(13), pages 1-20, July.
    2. Zhiwen Deng & Chang Xu & Zhihong Huo & Xingxing Han & Feifei Xue, 2023. "Yaw Optimisation for Wind Farm Production Maximisation Based on a Dynamic Wake Model," Energies, MDPI, vol. 16(9), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Guo-Wei & Ishihara, Takeshi, 2021. "Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity," Energy, Elsevier, vol. 220(C).
    2. Yang, Haoze & Ge, Mingwei & Gu, Bo & Du, Bowen & Liu, Yongqian, 2022. "The effect of swell on marine atmospheric boundary layer and the operation of an offshore wind turbine," Energy, Elsevier, vol. 244(PB).
    3. Yang, Haoze & Ge, Mingwei & Abkar, Mahdi & Yang, Xiang I.A., 2022. "Large-eddy simulation study of wind turbine array above swell sea," Energy, Elsevier, vol. 256(C).
    4. Frederik, Joeri A. & van Wingerden, Jan-Willem, 2022. "On the load impact of dynamic wind farm wake mixing strategies," Renewable Energy, Elsevier, vol. 194(C), pages 582-595.
    5. He, Ruiyang & Yang, Hongxing & Lu, Lin, 2023. "Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control," Applied Energy, Elsevier, vol. 337(C).
    6. Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
    7. Dou, Bingzheng & Qu, Timing & Lei, Liping & Zeng, Pan, 2020. "Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model," Energy, Elsevier, vol. 209(C).
    8. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
    9. Tristan Revaz & Fernando Porté-Agel, 2021. "Large-Eddy Simulation of Wind Turbine Flows: A New Evaluation of Actuator Disk Models," Energies, MDPI, vol. 14(13), pages 1-22, June.
    10. Guo-Wei Qian & Takeshi Ishihara, 2018. "A New Analytical Wake Model for Yawed Wind Turbines," Energies, MDPI, vol. 11(3), pages 1-24, March.
    11. He, Ruiyang & Yang, Hongxing & Sun, Shilin & Lu, Lin & Sun, Haiying & Gao, Xiaoxia, 2022. "A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control," Applied Energy, Elsevier, vol. 326(C).
    12. Abraham, Aliza & Hong, Jiarong, 2020. "Dynamic wake modulation induced by utility-scale wind turbine operation," Applied Energy, Elsevier, vol. 257(C).
    13. Tanvir Ahmad & Abdul Basit & Muneeb Ahsan & Olivier Coupiac & Nicolas Girard & Behzad Kazemtabrizi & Peter C. Matthews, 2019. "Implementation and Analyses of Yaw Based Coordinated Control of Wind Farms," Energies, MDPI, vol. 12(7), pages 1-15, April.
    14. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
    15. Chanprasert, W. & Sharma, R.N. & Cater, J.E. & Norris, S.E., 2022. "Large Eddy Simulation of wind turbine fatigue loading and yaw dynamics induced by wake turbulence," Renewable Energy, Elsevier, vol. 190(C), pages 208-222.
    16. Mohammadreza Mohammadi & Majid Bastankhah & Paul Fleming & Matthew Churchfield & Ervin Bossanyi & Lars Landberg & Renzo Ruisi, 2022. "Curled-Skewed Wakes behind Yawed Wind Turbines Subject to Veered Inflow," Energies, MDPI, vol. 15(23), pages 1-16, December.
    17. Sun, Jili & Chen, Zheng & Yu, Hao & Gao, Shan & Wang, Bin & Ying, You & Sun, Yong & Qian, Peng & Zhang, Dahai & Si, Yulin, 2022. "Quantitative evaluation of yaw-misalignment and aerodynamic wake induced fatigue loads of offshore Wind turbines," Renewable Energy, Elsevier, vol. 199(C), pages 71-86.
    18. Mou Lin & Fernando Porté-Agel, 2019. "Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind Tunnel Measurements and Analytical Wake Models," Energies, MDPI, vol. 12(23), pages 1-18, November.
    19. Boersma, S. & Doekemeijer, B.M. & Siniscalchi-Minna, S. & van Wingerden, J.W., 2019. "A constrained wind farm controller providing secondary frequency regulation: An LES study," Renewable Energy, Elsevier, vol. 134(C), pages 639-652.
    20. Wang, Qiang & Luo, Kun & Yuan, Renyu & Wang, Shuai & Fan, Jianren & Cen, Kefa, 2020. "A multiscale numerical framework coupled with control strategies for simulating a wind farm in complex terrain," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2542-:d:1090848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.