IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1479-d224132.html
   My bibliography  Save this article

Urban Wind Resource Assessment: A Case Study on Cape Town

Author

Listed:
  • Matthew Gough

    (Instituto Superior Técnico, 1049-001 Lisbon, Portugal)

  • Mohamed Lotfi

    (Faculty of Engineering of the University of Porto and INESC TEC, 4200-465 Porto, Portugal)

  • Rui Castro

    (INESC-ID, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal)

  • Amos Madhlopa

    (Energy Research Centre, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa)

  • Azeem Khan

    (Department of Electrical Engineering, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa)

  • João P. S. Catalão

    (Faculty of Engineering of the University of Porto and INESC TEC, 4200-465 Porto, Portugal)

Abstract

As the demand for renewable energy sources energy grows worldwide, small-scale urban wind energy (UWE) has drawn attention as having the potential to significantly contribute to urban electricity demand with environmental and socio-economic benefits. However, there is currently a lack of academic research surrounding realizable UWE potential, especially in the South African context. This study used high-resolution annual wind speed measurements from six locations spanning Cape Town to quantify and analyze the city’s UWE potential. Two-parameter Weibull distributions were constructed for each location, and the annual energy production (AEP) was calculated considering the power curves of four commonly used small-scale wind turbines (SWTs). The two Horizontal Axis Wind Turbines (HAWTs) showed higher AEP and capacity factors than Vertical Axis Wind Turbine (VAWT) ones. A diurnal analysis showed that, during summer, an SWT generates the majority of its electricity during the day, which resembles the typical South African electricity demand profile. However, during winter, the electricity is mainly generated in the early hours of the morning, which does not coincide with the typical load demand profile. Finally, the calculation of Levelized Cost of Electricity (LCOE) showed that SWT generation is more expensive, given current electricity market conditions and SWT technology. The study provides a detailed, large-scale and complete assessment of UWE resources of Cape Town, South Africa, the first of its kind at the time of this work.

Suggested Citation

  • Matthew Gough & Mohamed Lotfi & Rui Castro & Amos Madhlopa & Azeem Khan & João P. S. Catalão, 2019. "Urban Wind Resource Assessment: A Case Study on Cape Town," Energies, MDPI, vol. 12(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1479-:d:224132
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Usta, Ilhan, 2016. "An innovative estimation method regarding Weibull parameters for wind energy applications," Energy, Elsevier, vol. 106(C), pages 301-314.
    2. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    3. Karthikeya, B.R. & Negi, Prabal S. & Srikanth, N., 2016. "Wind resource assessment for urban renewable energy application in Singapore," Renewable Energy, Elsevier, vol. 87(P1), pages 403-414.
    4. Wais, Piotr, 2017. "A review of Weibull functions in wind sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1099-1107.
    5. Simões, Teresa & Estanqueiro, Ana, 2016. "A new methodology for urban wind resource assessment," Renewable Energy, Elsevier, vol. 89(C), pages 598-605.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sung-Hyun Hwang & Mun-Kyeom Kim & Ho-Sung Ryu, 2019. "Real Levelized Cost of Energy with Indirect Costs and Market Value of Variable Renewables: A Study of the Korean Power Market," Energies, MDPI, vol. 12(13), pages 1-18, June.
    2. Petar Sarajcev & Antun Meglic & Ranko Goic, 2021. "Lightning Overvoltage Protection of Step-Up Transformer Inside a Nacelle of Onshore New-Generation Wind Turbines," Energies, MDPI, vol. 14(2), pages 1-20, January.
    3. Diego Calabrese & Gioacchino Tricarico & Elia Brescia & Giuseppe Leonardo Cascella & Vito Giuseppe Monopoli & Francesco Cupertino, 2020. "Variable Structure Control of a Small Ducted Wind Turbine in the Whole Wind Speed Range Using a Luenberger Observer," Energies, MDPI, vol. 13(18), pages 1-23, September.
    4. Isabel Cristina Gil-García & María Socorro García-Cascales & Angel Molina-García, 2022. "Urban Wind: An Alternative for Sustainable Cities," Energies, MDPI, vol. 15(13), pages 1-20, June.
    5. Mohamed Lotfi & Mohammad Javadi & Gerardo J. Osório & Cláudio Monteiro & João P. S. Catalão, 2020. "A Novel Ensemble Algorithm for Solar Power Forecasting Based on Kernel Density Estimation," Energies, MDPI, vol. 13(1), pages 1-19, January.
    6. Luca Salvadori & Annalisa Di Bernardino & Giorgio Querzoli & Simone Ferrari, 2021. "A Novel Automatic Method for the Urban Canyon Parametrization Needed by Turbulence Numerical Simulations for Wind Energy Potential Assessment," Energies, MDPI, vol. 14(16), pages 1-22, August.
    7. González-Mares, Mariana Odemaris & Aradillas-García, Celia & Márquez-Mireles, Leonardo Ernesto & Monsiváis-Nava, Claudia Davinia & Bernal-Medina, Jesús Eduardo & Vargas-Morales, Juan Manuel & Portales, 2022. "Implementation and evaluation of an educational intervention to prevent risk factors for the development of non-communicable diseases in Mexican families of suburban communities," Evaluation and Program Planning, Elsevier, vol. 92(C).
    8. Duong Minh Ngoc & Montri Luengchavanon & Pham Thi Anh & Kim Humphreys & Kuaanan Techato, 2022. "Shades of Green: Life Cycle Assessment of a Novel Small-Scale Vertical Axis Wind Turbine Tree," Energies, MDPI, vol. 15(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    2. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    3. Teschner, Na'ama & Alterman, Rachelle, 2018. "Preparing the ground: Regulatory challenges in siting small-scale wind turbines in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1660-1668.
    4. Dong, Zuo & Wang, Xianjia & Zhu, Runzhou & Dong, Xuan & Ai, Xueshan, 2022. "Improving the accuracy of wind speed statistical analysis and wind energy utilization in the Ningxia Autonomous Region, China," Applied Energy, Elsevier, vol. 320(C).
    5. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    6. Škvorc, Petar & Kozmar, Hrvoje, 2021. "Wind energy harnessing on tall buildings in urban environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Alexander Vallejo Díaz & Idalberto Herrera Moya & Edwin Garabitos Lara & Cándida K. Casilla Victorino, 2024. "Assessment of Urban Wind Potential and the Stakeholders Involved in Energy Decision-Making," Sustainability, MDPI, vol. 16(4), pages 1-20, February.
    8. Bao, Mupeng & Xie, Yudong & Zhang, Xinbiao & Ju, Jinyong & Wang, Yong, 2023. "Performance improvement of a control valve with energy harvesting," Energy, Elsevier, vol. 263(PC).
    9. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
    10. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    11. Ram Avtar & Netrananda Sahu & Ashwani Kumar Aggarwal & Shamik Chakraborty & Ali Kharrazi & Ali P. Yunus & Jie Dou & Tonni Agustiono Kurniawan, 2019. "Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review," Resources, MDPI, vol. 8(3), pages 1-23, August.
    12. Mintra Trongtorkarn & Thanansak Theppaya & Kuaanan Techato & Montri Luengchavanon & Chainuson Kasagepongsarn, 2021. "Relationship between Starting Torque and Thermal Behaviour for a Permanent Magnet Synchronous Generator (PMSG) Applied with Vertical Axis Wind Turbine (VAWT)," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    13. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    14. Tiam Kapen, Pascalin & Jeutho Gouajio, Marinette & Yemélé, David, 2020. "Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon," Renewable Energy, Elsevier, vol. 159(C), pages 1188-1198.
    15. Pagnini, Luisa & Piccardo, Giuseppe & Repetto, Maria Pia, 2018. "Full scale behavior of a small size vertical axis wind turbine," Renewable Energy, Elsevier, vol. 127(C), pages 41-55.
    16. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    17. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    18. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    19. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    20. Rakib, M.I. & Evans, S.P. & Clausen, P.D., 2020. "Measured gust events in the urban environment, a comparison with the IEC standard," Renewable Energy, Elsevier, vol. 146(C), pages 1134-1142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1479-:d:224132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.