IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4620-d294612.html
   My bibliography  Save this article

Green Performance Evaluation System for Energy-Efficiency-Based Planning for Construction Site Layout

Author

Listed:
  • Cynthia Changxin Wang

    (Faculty of Built Environment, University of New South Wales, Sydney NSW 2052, Australia)

  • Samad M.E. Sepasgozar

    (Faculty of Built Environment, University of New South Wales, Sydney NSW 2052, Australia)

  • Mudan Wang

    (Faculty of Built Environment, University of New South Wales, Sydney NSW 2052, Australia)

  • Jun Sun

    (School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Xin Ning

    (School of Investment & Construction Management, Dongbei University of Finance and Economics, Dalian 116025, China)

Abstract

The location of temporary facilities in a construction project and the entire site layout plan directly affect project objectives such as time, labor cost, and material transportation and handling. The layout of construction sites also affects entrainment factors such as energy consumption, carbon footprints, and overall construction operation productivity. While site layout planning has been intensively investigated from a project objectives perspective, there have been very few studies of energy-efficiency-based planning, or of the sustainability performance of site layouts. This study developed a green performance evaluation system aimed at improving the sustainability of construction site layouts. The identified factors include six sustainable evaluation categories covering energy conservation and environmental protection, people-oriented principles, construction efficiency, intensity of economic growth, intensity of space use, and the overall control of process. An analytic hierarchy process (AHP) was adopted to determine the weight of each attribute and a fuzzy comprehensive evaluation method was established to carry out the evaluation. The 23 attributes adopted in this paper were identified in the literature; however, the major contribution of this paper is the development of a green performance evaluation system. This system integrates both qualitative and quantitative attributes and provides an overall evaluation of the environmental effectiveness of a construction site layout. The proposed evaluation system was validated with a commercial building project. The average utilization ratio of the case study site was calculated as 94%, and lessons learned are discussed in this paper. The case study analysis identified available site spaces around the building and examined how the arrangement of resources and facilities ensures effective connection between construction activities. The findings showed that the facility’s layout plays a crucial role in energy consumption and green performance. The proposed system will support construction project managers to create high-performance construction site layouts in more scientific and systematic ways.

Suggested Citation

  • Cynthia Changxin Wang & Samad M.E. Sepasgozar & Mudan Wang & Jun Sun & Xin Ning, 2019. "Green Performance Evaluation System for Energy-Efficiency-Based Planning for Construction Site Layout," Energies, MDPI, vol. 12(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4620-:d:294612
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yong & Oberheitmann, Andreas, 2009. "Challenges of rapid economic growth in China: Reconciling sustainable energy use, environmental stewardship and social development," Energy Policy, Elsevier, vol. 37(4), pages 1412-1422, April.
    2. Abu Bakar, Nur Najihah & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah & Bandi, Masilah, 2015. "Energy efficiency index as an indicator for measuring building energy performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 1-11.
    3. Dunker, Thomas & Radons, Gunter & Westkamper, Engelbert, 2005. "Combining evolutionary computation and dynamic programming for solving a dynamic facility layout problem," European Journal of Operational Research, Elsevier, vol. 165(1), pages 55-69, August.
    4. Ka-Chi Lam & Xin Ning & Thomas Ng, 2007. "The application of the ant colony optimization algorithm to the construction site layout planning problem," Construction Management and Economics, Taylor & Francis Journals, vol. 25(4), pages 359-374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matheus Koengkan & José Alberto Fuinhas, 2022. "Heterogeneous Effect of “Eco-Friendly” Dwellings on Transaction Prices in Real Estate Market in Portugal," Energies, MDPI, vol. 15(18), pages 1-18, September.
    2. Alena Tažiková & Zuzana Struková & Mária Kozlovská, 2023. "An Analysis of Real Site Operation Time in Construction of Residential Buildings in Slovakia," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    3. Qadeer Ali & Muhammad Jamaluddin Thaheem & Fahim Ullah & Samad M. E. Sepasgozar, 2020. "The Performance Gap in Energy-Efficient Office Buildings: How the Occupants Can Help?," Energies, MDPI, vol. 13(6), pages 1-27, March.
    4. Liu, Wu & Hui, Longxuan & Lu, Yuting & Tang, Jinsong, 2020. "Developing an evaluation method for SCADA-Controlled urban gas infrastructure hierarchical design using multi-level fuzzy comprehensive evaluation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 30(C).
    5. Matheus Koengkan & José Alberto Fuinhas & Magdalena Radulescu & Emad Kazemzadeh & Nooshin Karimi Alavijeh & Renato Santiago & Mônica Teixeira, 2023. "Assessing the Role of Financial Incentives in Promoting Eco-Friendly Houses in the Lisbon Metropolitan Area—Portugal," Energies, MDPI, vol. 16(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    2. Mariem Besbes & Marc Zolghadri & Roberta Costa Affonso & Faouzi Masmoudi & Mohamed Haddar, 2020. "A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A* search," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 615-640, March.
    3. Jan van der Borg & Erwin van Tuijl, 2011. "Upgrading of Symbolic and Synthetic Knowledge Bases: Analysis of the Architecture, Engineering and Construction industry and the Automotive Industry in China," Working Papers 2011_25, Department of Economics, University of Venice "Ca' Foscari".
    4. Bian, Yiwen & He, Ping & Xu, Hao, 2013. "Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach," Energy Policy, Elsevier, vol. 63(C), pages 962-971.
    5. Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.
    6. Wang, Yang & Kuckelkorn, Jens & Li, Daoliang & Du, Jiangtao, 2018. "Evaluation on distributed renewable energy system integrated with a Passive House building using a new energy performance index," Energy, Elsevier, vol. 161(C), pages 81-89.
    7. Tullio de Rubeis & Annamaria Ciccozzi & Letizia Giusti & Dario Ambrosini, 2022. "The 3D Printing Potential for Heat Flow Optimization: Influence of Block Geometries on Heat Transfer Processes," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    8. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    9. Wang, Qunwei & Zhou, Peng & Zhou, Dequn, 2012. "Efficiency measurement with carbon dioxide emissions: The case of China," Applied Energy, Elsevier, vol. 90(1), pages 161-166.
    10. Rosaura Castrillón Mendoza & Javier M. Rey Hernández & Eloy Velasco Gómez & Julio F. San José Alonso & Francisco J. Rey Martínez, 2018. "Analysis of the Methodology to Obtain Several Key Indicators Performance (KIP), by Energy Retrofitting of the Actual Building to the District Heating Fuelled by Biomass, Focusing on nZEB Goal: Case of," Energies, MDPI, vol. 12(1), pages 1-20, December.
    11. Kratica, Jozef & Stanimirovic, Zorica & Tosic, Dusan & Filipovic, Vladimir, 2007. "Two genetic algorithms for solving the uncapacitated single allocation p-hub median problem," European Journal of Operational Research, Elsevier, vol. 182(1), pages 15-28, October.
    12. Zhao, Lu-Tao & Liu, Zhao-Ting & Cheng, Lei, 2021. "How will China's coal industry develop in the future? A quantitative analysis with policy implications," Energy, Elsevier, vol. 235(C).
    13. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    14. Wang, Xia & Ding, Chao & Zhou, Mao & Cai, Weiguang & Ma, Xianrui & Yuan, Jiachen, 2023. "Assessment of space heating consumption efficiency based on a household survey in the hot summer and cold winter climate zone in China," Energy, Elsevier, vol. 274(C).
    15. Bian, Yiwen & Hu, Miao & Wang, Yousen & Xu, Hao, 2016. "Energy efficiency analysis of the economic system in China during 1986–2012: A parallel slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 990-998.
    16. Rohács, Dániel, 2023. "Analysis and optimization of potential energy sources for residential building application," Energy, Elsevier, vol. 275(C).
    17. Zhixing Li & Mimi Tian & Xiaoqing Zhu & Shujing Xie & Xin He, 2022. "A Review of Integrated Design Process for Building Climate Responsiveness," Energies, MDPI, vol. 15(19), pages 1-35, September.
    18. Lei Wang & Ruyin Long & Hong Chen, 2017. "Study of Urban Energy Performance Assessment and Its Influencing Factors Based on Improved Stochastic Frontier Analysis: A Case Study of Provincial Capitals in China," Sustainability, MDPI, vol. 9(7), pages 1-18, June.
    19. Pourvaziri, Hani & Pierreval, Henri & Marian, Helene, 2021. "Integrating facility layout design and aisle structure in manufacturing systems: Formulation and exact solution," European Journal of Operational Research, Elsevier, vol. 290(2), pages 499-513.
    20. Martínez-de-Alegría, Itziar & Río, Rosa-María & Zarrabeitia, Enara & Álvarez, Izaskun, 2021. "Heating demand as an energy performance indicator: A case study of buildings built under the passive house standard in Spain," Energy Policy, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4620-:d:294612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.