IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4349-d287190.html
   My bibliography  Save this article

Phase Space Reconstruction Algorithm and Deep Learning-Based Very Short-Term Bus Load Forecasting

Author

Listed:
  • Tian Shi

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Fei Mei

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Jixiang Lu

    (State Key Laboratory of Smart Grid Protection and Control, NARI Group Corporation, Nanjing 211000, China)

  • Jinjun Lu

    (State Key Laboratory of Smart Grid Protection and Control, NARI Group Corporation, Nanjing 211000, China)

  • Yi Pan

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Cheng Zhou

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Jianzhang Wu

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Jianyong Zheng

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

With the refinement and intelligence of power system optimal dispatching, the widespread adoption of advanced grid applications that consider the safety and economy of power systems, and the massive access of distributed energy resources, the requirement for bus load prediction accuracy is continuously increasing. Aiming at the volatility brought about by the large-scale access of new energy sources, the adaptability to different forecasting horizons and the time series characteristics of the load, this paper proposes a phase space reconstruction (PSR) and deep belief network (DBN)-based very short-term bus load prediction model. Cross-validation is also employed to optimize the structure of the DBN. The proposed PSR-DBN very short-term bus load forecasting model is verified by applying the real measured load data of a substation. The results prove that, when compared to other alternative models, the PSR-DBN model has higher prediction accuracy and better adaptability for different forecasting horizons in the case of high distributed power penetration and large fluctuation of bus load.

Suggested Citation

  • Tian Shi & Fei Mei & Jixiang Lu & Jinjun Lu & Yi Pan & Cheng Zhou & Jianzhang Wu & Jianyong Zheng, 2019. "Phase Space Reconstruction Algorithm and Deep Learning-Based Very Short-Term Bus Load Forecasting," Energies, MDPI, vol. 12(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4349-:d:287190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4349/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4349/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
    2. Fan, Guo-Feng & Peng, Li-Ling & Hong, Wei-Chiang, 2018. "Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model," Applied Energy, Elsevier, vol. 224(C), pages 13-33.
    3. Yu Feng & Xianfeng Xu & Yun Meng, 2019. "Short-Term Load Forecasting with Tensor Partial Least Squares-Neural Network," Energies, MDPI, vol. 12(6), pages 1-9, March.
    4. Xiaoyu Zhang & Rui Wang & Tao Zhang & Yajie Liu & Yabing Zha, 2018. "Short-Term Load Forecasting Using a Novel Deep Learning Framework," Energies, MDPI, vol. 11(6), pages 1-15, June.
    5. Lintao Yang & Honggeng Yang, 2019. "Analysis of Different Neural Networks and a New Architecture for Short-Term Load Forecasting," Energies, MDPI, vol. 12(8), pages 1-23, April.
    6. Rob J. Hyndman, 2006. "Another Look at Forecast Accuracy Metrics for Intermittent Demand," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 4, pages 43-46, June.
    7. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang Yuan & Jiang Guo & Zhihuai Xiao & Bing Zeng & Wenqiang Zhu & Sixu Huang, 2020. "An Interval Forecasting Model Based on Phase Space Reconstruction and Weighted Least Squares Support Vector Machine for Time Series of Dissolved Gas Content in Transformer Oil," Energies, MDPI, vol. 13(7), pages 1-28, April.
    2. Antonio Gabaldón & María Carmen Ruiz-Abellón & Luis Alfredo Fernández-Jiménez, 2022. "Guest Editorial: Special Issue on Short-Term Load Forecasting 2019, Results and Future Perspectives," Energies, MDPI, vol. 15(24), pages 1-5, December.
    3. Reynaldo Gonzalez & Sara Ahmed & Miltiadis Alamaniotis, 2023. "Implementing Very-Short-Term Forecasting of Residential Load Demand Using a Deep Neural Network Architecture," Energies, MDPI, vol. 16(9), pages 1-16, April.
    4. Artur Łukaszewski & Łukasz Nogal & Sylwester Robak, 2020. "Weight Calculation Alternative Methods in Prime’s Algorithm Dedicated for Power System Restoration Strategies," Energies, MDPI, vol. 13(22), pages 1-20, November.
    5. Xu Ran & Chang Xu & Lei Ma & Feifei Xue, 2022. "Wind Power Interval Prediction with Adaptive Rolling Error Correction Based on PSR-BLS-QR," Energies, MDPI, vol. 15(11), pages 1-22, June.
    6. Gabriel Trierweiler Ribeiro & João Guilherme Sauer & Naylene Fraccanabbia & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Bayesian Optimized Echo State Network Applied to Short-Term Load Forecasting," Energies, MDPI, vol. 13(9), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    2. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    3. Jose R. Cedeño González & Juan J. Flores & Claudio R. Fuerte-Esquivel & Boris A. Moreno-Alcaide, 2020. "Nearest Neighbors Time Series Forecaster Based on Phase Space Reconstruction for Short-Term Load Forecasting," Energies, MDPI, vol. 13(20), pages 1-24, October.
    4. Pavlos Nikolaidis & Harris Partaourides, 2021. "A Model Predictive Control for the Dynamical Forecast of Operating Reserves in Frequency Regulation Services," Forecasting, MDPI, vol. 3(1), pages 1-14, March.
    5. Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
    6. Alexis Gerossier & Robin Girard & Alexis Bocquet & George Kariniotakis, 2018. "Robust Day-Ahead Forecasting of Household Electricity Demand and Operational Challenges," Energies, MDPI, vol. 11(12), pages 1-18, December.
    7. Mohan, Neethu & Soman, K.P. & Sachin Kumar, S., 2018. "A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model," Applied Energy, Elsevier, vol. 232(C), pages 229-244.
    8. Imani, Maryam & Ghassemian, Hassan, 2019. "Residential load forecasting using wavelet and collaborative representation transforms," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Rafati, Amir & Joorabian, Mahmood & Mashhour, Elaheh, 2020. "An efficient hour-ahead electrical load forecasting method based on innovative features," Energy, Elsevier, vol. 201(C).
    10. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    11. Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
    12. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    13. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
    14. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    15. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    16. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    17. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    18. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    19. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    20. Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Automatic Selection of Temperature Variables for Short-Term Load Forecasting," Sustainability, MDPI, vol. 14(20), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4349-:d:287190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.