IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v253y2019ic86.html
   My bibliography  Save this article

Residential load forecasting using wavelet and collaborative representation transforms

Author

Listed:
  • Imani, Maryam
  • Ghassemian, Hassan

Abstract

Short-term household-level load forecasting requires to acquire knowledge about lifestyle and consumption patterns of residents. A new forecasting framework is proposed in this work which uses the extra appliance measurements in meter-level for short-term electrical load forecasting. The long short-term memory network as a deep learning method is used as a predictor where useful features are fed to it for forecast learning. A lagged load variable vector is assigned to each point of the load curve. To remove redundant details and to use the approximate component of the feature vector, the wavelet decomposition is applied to it. In addition, a new version of collaborative representation is introduced and used to achieve information of the neighboring points (previous and future time instances) of the considered load point. Collaborative representation of the feature vector associated with each load point contains valuable local information about adjacent load points. The load features extracted from the lagged load variable vector provide superior forecasting performance especially with extra appliances load data.

Suggested Citation

  • Imani, Maryam & Ghassemian, Hassan, 2019. "Residential load forecasting using wavelet and collaborative representation transforms," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:253:y:2019:i:c:86
    DOI: 10.1016/j.apenergy.2019.113505
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919311791
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shepero, Mahmoud & van der Meer, Dennis & Munkhammar, Joakim & Widén, Joakim, 2018. "Residential probabilistic load forecasting: A method using Gaussian process designed for electric load data," Applied Energy, Elsevier, vol. 218(C), pages 159-172.
    2. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    3. Wang, Yi & Gan, Dahua & Sun, Mingyang & Zhang, Ning & Lu, Zongxiang & Kang, Chongqing, 2019. "Probabilistic individual load forecasting using pinball loss guided LSTM," Applied Energy, Elsevier, vol. 235(C), pages 10-20.
    4. Xu, Lei & Wang, Shengwei & Tang, Rui, 2019. "Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load," Applied Energy, Elsevier, vol. 237(C), pages 180-195.
    5. Li, Yanying & Che, Jinxing & Yang, Youlong, 2018. "Subsampled support vector regression ensemble for short term electric load forecasting," Energy, Elsevier, vol. 164(C), pages 160-170.
    6. Xiaoyu Zhang & Rui Wang & Tao Zhang & Yajie Liu & Yabing Zha, 2018. "Short-Term Load Forecasting Using a Novel Deep Learning Framework," Energies, MDPI, vol. 11(6), pages 1-15, June.
    7. Coelho, Igor M. & Coelho, Vitor N. & Luz, Eduardo J. da S. & Ochi, Luiz S. & Guimarães, Frederico G. & Rios, Eyder, 2017. "A GPU deep learning metaheuristic based model for time series forecasting," Applied Energy, Elsevier, vol. 201(C), pages 412-418.
    8. Ghadimi, Noradin & Akbarimajd, Adel & Shayeghi, Hossein & Abedinia, Oveis, 2018. "Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting," Energy, Elsevier, vol. 161(C), pages 130-142.
    9. Khoshrou, Abdolrahman & Pauwels, Eric J., 2019. "Short-term scenario-based probabilistic load forecasting: A data-driven approach," Applied Energy, Elsevier, vol. 238(C), pages 1258-1268.
    10. Yang, Ting & Ren, Minglun & Zhou, Kaile, 2018. "Identifying household electricity consumption patterns: A case study of Kunshan, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 861-868.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    2. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    3. Jiang, Weiheng & Wu, Xiaogang & Gong, Yi & Yu, Wanxin & Zhong, Xinhui, 2020. "Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption," Energy, Elsevier, vol. 193(C).
    4. Wei, Nan & Yin, Lihua & Li, Chao & Wang, Wei & Qiao, Weibiao & Li, Changjun & Zeng, Fanhua & Fu, Lingdi, 2022. "Short-term load forecasting using detrend singular spectrum fluctuation analysis," Energy, Elsevier, vol. 256(C).
    5. Ahajjam, Mohamed Aymane & Bonilla Licea, Daniel & Ghogho, Mounir & Kobbane, Abdellatif, 2022. "Experimental investigation of variational mode decomposition and deep learning for short-term multi-horizon residential electric load forecasting," Applied Energy, Elsevier, vol. 326(C).
    6. Imani, Maryam, 2021. "Electrical load-temperature CNN for residential load forecasting," Energy, Elsevier, vol. 227(C).
    7. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    8. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    9. Ahir, Rajesh K. & Chakraborty, Basab, 2021. "A meta-analytic approach for determining the success factors for energy conservation," Energy, Elsevier, vol. 230(C).
    10. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
    11. Bo Hu & Jian Xu & Zuoxia Xing & Pengfei Zhang & Jia Cui & Jinglu Liu, 2022. "Short-Term Combined Forecasting Method of Park Load Based on CEEMD-MLR-LSSVR-SBO," Energies, MDPI, vol. 15(8), pages 1-14, April.
    12. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    13. Yang, Wangwang & Shi, Jing & Li, Shujian & Song, Zhaofang & Zhang, Zitong & Chen, Zexu, 2022. "A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior," Applied Energy, Elsevier, vol. 307(C).
    14. Sun, Wenqiang & Wang, Zihao & Wang, Qiang, 2020. "Hybrid event-, mechanism- and data-driven prediction of blast furnace gas generation," Energy, Elsevier, vol. 199(C).
    15. Abdullah Alrasheedi & Abdulaziz Almalaq, 2022. "Hybrid Deep Learning Applied on Saudi Smart Grids for Short-Term Load Forecasting," Mathematics, MDPI, vol. 10(15), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    2. Pavlos Nikolaidis & Harris Partaourides, 2021. "A Model Predictive Control for the Dynamical Forecast of Operating Reserves in Frequency Regulation Services," Forecasting, MDPI, vol. 3(1), pages 1-14, March.
    3. Rafati, Amir & Joorabian, Mahmood & Mashhour, Elaheh, 2020. "An efficient hour-ahead electrical load forecasting method based on innovative features," Energy, Elsevier, vol. 201(C).
    4. Brusaferri, Alessandro & Matteucci, Matteo & Spinelli, Stefano & Vitali, Andrea, 2022. "Probabilistic electric load forecasting through Bayesian Mixture Density Networks," Applied Energy, Elsevier, vol. 309(C).
    5. Jonathan Roth & Jayashree Chadalawada & Rishee K. Jain & Clayton Miller, 2021. "Uncertainty Matters: Bayesian Probabilistic Forecasting for Residential Smart Meter Prediction, Segmentation, and Behavioral Measurement and Verification," Energies, MDPI, vol. 14(5), pages 1-22, March.
    6. Giancarlo Aquila & Lucas Barros Scianni Morais & Victor Augusto Durães de Faria & José Wanderley Marangon Lima & Luana Medeiros Marangon Lima & Anderson Rodrigo de Queiroz, 2023. "An Overview of Short-Term Load Forecasting for Electricity Systems Operational Planning: Machine Learning Methods and the Brazilian Experience," Energies, MDPI, vol. 16(21), pages 1-35, November.
    7. Liu, Xuefeng & Huang, Bin & Zheng, Yulan, 2023. "Control strategy for dynamic operation of multiple chillers under random load constraints," Energy, Elsevier, vol. 270(C).
    8. Sanlei Dang & Long Peng & Jingming Zhao & Jiajie Li & Zhengmin Kong, 2022. "A Quantile Regression Random Forest-Based Short-Term Load Probabilistic Forecasting Method," Energies, MDPI, vol. 15(2), pages 1-20, January.
    9. Imani, Maryam, 2021. "Electrical load-temperature CNN for residential load forecasting," Energy, Elsevier, vol. 227(C).
    10. Xu, Lei & Wang, Shengwei & Tang, Rui, 2019. "Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load," Applied Energy, Elsevier, vol. 237(C), pages 180-195.
    11. Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
    12. Henni, Sarah & Becker, Jonas & Staudt, Philipp & vom Scheidt, Frederik & Weinhardt, Christof, 2022. "Industrial peak shaving with battery storage using a probabilistic forecasting approach: Economic evaluation of risk attitude," Applied Energy, Elsevier, vol. 327(C).
    13. Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
    14. S. M. Mahfuz Alam & Mohd. Hasan Ali, 2020. "Equation Based New Methods for Residential Load Forecasting," Energies, MDPI, vol. 13(23), pages 1-22, December.
    15. Yang, Wangwang & Shi, Jing & Li, Shujian & Song, Zhaofang & Zhang, Zitong & Chen, Zexu, 2022. "A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior," Applied Energy, Elsevier, vol. 307(C).
    16. Behm, Christian & Nolting, Lars & Praktiknjo, Aaron, 2020. "How to model European electricity load profiles using artificial neural networks," Applied Energy, Elsevier, vol. 277(C).
    17. Zhang, Shu & Wang, Yi & Zhang, Yutian & Wang, Dan & Zhang, Ning, 2020. "Load probability density forecasting by transforming and combining quantile forecasts," Applied Energy, Elsevier, vol. 277(C).
    18. Dumas, Jonathan & Wehenkel, Antoine & Lanaspeze, Damien & Cornélusse, Bertrand & Sutera, Antonio, 2022. "A deep generative model for probabilistic energy forecasting in power systems: normalizing flows," Applied Energy, Elsevier, vol. 305(C).
    19. Aslam, Sheraz & Herodotou, Herodotos & Mohsin, Syed Muhammad & Javaid, Nadeem & Ashraf, Nouman & Aslam, Shahzad, 2021. "A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Mohan, Neethu & Soman, K.P. & Sachin Kumar, S., 2018. "A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model," Applied Energy, Elsevier, vol. 232(C), pages 229-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:253:y:2019:i:c:86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.