IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3636-d1130950.html
   My bibliography  Save this article

Implementing Very-Short-Term Forecasting of Residential Load Demand Using a Deep Neural Network Architecture

Author

Listed:
  • Reynaldo Gonzalez

    (Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA)

  • Sara Ahmed

    (Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA)

  • Miltiadis Alamaniotis

    (Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA)

Abstract

The need for and interest in very-short-term load forecasting (VSTLF) is increasing and important for goals such as energy pricing markets. There is greater challenge in predicting load consumption for residential-load-type data, which is highly variable in nature and does not form visible patterns present in aggregated nodal-type load data. Previous works have used methods such as LSTM and CNN for VSTLF; however, the use of DNN has yet to be investigated. Furthermore, DNNs have been effectively used in STLF but have not been applied to very-short-term time frames. In this work, a deep network architecture is proposed and applied to very-short-term forecasting of residential load patterns that exhibit high variability and abrupt changes. The method extends previous work by including delayed load demand as an input, as well as working for 1 min data resolution. The deep model is trained on the load demand data of selected days—one, two, and a week—prior to the targeted day. Test results on real-world residential load patterns encompassing a set of 32 days (a sample from different seasons and special days) exhibit the efficiency of the deep network in providing high-accuracy residential forecasts, as measured with three different error metrics, namely MSE, RMSE, and MAPE. On average, MSE and RMSE are lower than 0.51 kW and 0.69 kW, and MAPE lower than 0.51%.

Suggested Citation

  • Reynaldo Gonzalez & Sara Ahmed & Miltiadis Alamaniotis, 2023. "Implementing Very-Short-Term Forecasting of Residential Load Demand Using a Deep Neural Network Architecture," Energies, MDPI, vol. 16(9), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3636-:d:1130950
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3636/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3636/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian Shi & Fei Mei & Jixiang Lu & Jinjun Lu & Yi Pan & Cheng Zhou & Jianzhang Wu & Jianyong Zheng, 2019. "Phase Space Reconstruction Algorithm and Deep Learning-Based Very Short-Term Bus Load Forecasting," Energies, MDPI, vol. 12(22), pages 1-17, November.
    2. Sha, Huajing & Xu, Peng & Lin, Meishun & Peng, Chen & Dou, Qiang, 2021. "Development of a multi-granularity energy forecasting toolkit for demand response baseline calculation," Applied Energy, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farzad Dadras Javan & Italo Aldo Campodonico Avendano & Behzad Najafi & Amin Moazami & Fabio Rinaldi, 2023. "Machine-Learning-Based Prediction of HVAC-Driven Load Flexibility in Warehouses," Energies, MDPI, vol. 16(14), pages 1-15, July.
    2. Ottavia Valentini & Nikoleta Andreadou & Paolo Bertoldi & Alexandre Lucas & Iolanda Saviuc & Evangelos Kotsakis, 2022. "Demand Response Impact Evaluation: A Review of Methods for Estimating the Customer Baseline Load," Energies, MDPI, vol. 15(14), pages 1-36, July.
    3. Gabriel Trierweiler Ribeiro & João Guilherme Sauer & Naylene Fraccanabbia & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Bayesian Optimized Echo State Network Applied to Short-Term Load Forecasting," Energies, MDPI, vol. 13(9), pages 1-19, May.
    4. Marcel Antal & Vlad Mihailescu & Tudor Cioara & Ionut Anghel, 2022. "Blockchain-Based Distributed Federated Learning in Smart Grid," Mathematics, MDPI, vol. 10(23), pages 1-19, November.
    5. Xu Ran & Chang Xu & Lei Ma & Feifei Xue, 2022. "Wind Power Interval Prediction with Adaptive Rolling Error Correction Based on PSR-BLS-QR," Energies, MDPI, vol. 15(11), pages 1-22, June.
    6. Fang Yuan & Jiang Guo & Zhihuai Xiao & Bing Zeng & Wenqiang Zhu & Sixu Huang, 2020. "An Interval Forecasting Model Based on Phase Space Reconstruction and Weighted Least Squares Support Vector Machine for Time Series of Dissolved Gas Content in Transformer Oil," Energies, MDPI, vol. 13(7), pages 1-28, April.
    7. Artur Łukaszewski & Łukasz Nogal & Sylwester Robak, 2020. "Weight Calculation Alternative Methods in Prime’s Algorithm Dedicated for Power System Restoration Strategies," Energies, MDPI, vol. 13(22), pages 1-20, November.
    8. Luca Gugliermetti & Fabrizio Cumo & Sofia Agostinelli, 2024. "A Future Direction of Machine Learning for Building Energy Management: Interpretable Models," Energies, MDPI, vol. 17(3), pages 1-27, February.
    9. Antonio Gabaldón & María Carmen Ruiz-Abellón & Luis Alfredo Fernández-Jiménez, 2022. "Guest Editorial: Special Issue on Short-Term Load Forecasting 2019, Results and Future Perspectives," Energies, MDPI, vol. 15(24), pages 1-5, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3636-:d:1130950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.