IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5407-d1195143.html
   My bibliography  Save this article

Machine-Learning-Based Prediction of HVAC-Driven Load Flexibility in Warehouses

Author

Listed:
  • Farzad Dadras Javan

    (Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy
    These authors contributed equally to this work.)

  • Italo Aldo Campodonico Avendano

    (Department of Ocean Operations and Civil Engineering, Faculty of Engineering, NTNU, 6009 Ålesund, Norway
    These authors contributed equally to this work.)

  • Behzad Najafi

    (Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

  • Amin Moazami

    (Department of Ocean Operations and Civil Engineering, Faculty of Engineering, NTNU, 6009 Ålesund, Norway
    Department of Architectural Engineering, SINTEF Community, SINTEF AS, Børrestuveien 3, 0373 Oslo, Norway)

  • Fabio Rinaldi

    (Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

Abstract

This paper introduces a methodology for predicting a warehouse’s reduced load while offering flexibility. Physics-based energy simulations are first performed to model flexibility events, which involve adjusting cooling setpoints with controlled temperature increases to reduce the cooling load. The warehouse building encompasses office and storage spaces, and three cooling scenarios are implemented, i.e., exclusive storage area cooling, exclusive office area cooling, and cooling in both spaces, to expand the study’s potential applications. Next, the simulation data are utilized for training machine learning (ML)-based pipelines, predicting five subsequent hourly energy consumption values an hour before the setpoint adjustments, providing time to plan participation in demand response programs or prepare for charging electric vehicles. For each scenario, the performance of an Artificial Neural Network (ANN) and a tree-based ML algorithm are compared. Moreover, an expanding window scheme is utilized, gradually incorporating new data and emulating online learning. The results indicate the superior performance of the tree-based algorithm, with an average error of less than 3.5% across all cases and a maximum hourly error of 7%. The achieved accuracy confirms the method’s reliability even in dynamic scenarios where the integrated load of storage space and offices needs to be predicted.

Suggested Citation

  • Farzad Dadras Javan & Italo Aldo Campodonico Avendano & Behzad Najafi & Amin Moazami & Fabio Rinaldi, 2023. "Machine-Learning-Based Prediction of HVAC-Driven Load Flexibility in Warehouses," Energies, MDPI, vol. 16(14), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5407-:d:1195143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manoj Manivannan & Behzad Najafi & Fabio Rinaldi, 2017. "Machine Learning-Based Short-Term Prediction of Air-Conditioning Load through Smart Meter Analytics," Energies, MDPI, vol. 10(11), pages 1-17, November.
    2. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    4. Zixu Liu & Xiaojun Zeng & Fanlin Meng, 2018. "An Integration Mechanism between Demand and Supply Side Management of Electricity Markets," Energies, MDPI, vol. 11(12), pages 1-23, November.
    5. Sha, Huajing & Xu, Peng & Lin, Meishun & Peng, Chen & Dou, Qiang, 2021. "Development of a multi-granularity energy forecasting toolkit for demand response baseline calculation," Applied Energy, Elsevier, vol. 289(C).
    6. Tania Cerquitelli & Giovanni Malnati & Daniele Apiletti, 2019. "Exploiting Scalable Machine-Learning Distributed Frameworks to Forecast Power Consumption of Buildings," Energies, MDPI, vol. 12(15), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Stöckl & Johannes Idda & Volker Selleneit & Uwe Holzhammer, 2023. "Flexible Operation to Reduce Greenhouse Gas Emissions along the Cold Chain for Chilling, Storage, and Transportation—A Case Study for Dairy Products," Sustainability, MDPI, vol. 15(21), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Coraci & Silvio Brandi & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings," Energies, MDPI, vol. 14(4), pages 1-26, February.
    2. Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
    3. Zeyue Sun & Mohsen Eskandari & Chaoran Zheng & Ming Li, 2022. "Handling Computation Hardness and Time Complexity Issue of Battery Energy Storage Scheduling in Microgrids by Deep Reinforcement Learning," Energies, MDPI, vol. 16(1), pages 1-20, December.
    4. Suzana Domjan & Sašo Medved & Boštjan Černe & Ciril Arkar, 2019. "Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures," Energies, MDPI, vol. 12(16), pages 1-18, August.
    5. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    6. Joanna Piotrowska-Woroniak & Tomasz Szul, 2022. "Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings," Energies, MDPI, vol. 15(23), pages 1-13, November.
    7. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    9. Isaías Gomes & Rui Melicio & Victor M. F. Mendes, 2021. "Assessing the Value of Demand Response in Microgrids," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    10. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    11. Sanjin Gumbarević & Ivana Burcar Dunović & Bojan Milovanović & Mergim Gaši, 2020. "Method for Building Information Modeling Supported Project Control of Nearly Zero-Energy Building Delivery," Energies, MDPI, vol. 13(20), pages 1-21, October.
    12. David Bienvenido-Huertas, 2020. "Analysis of the Impact of the Use Profile of HVAC Systems Established by the Spanish Standard to Assess Residential Building Energy Performance," Sustainability, MDPI, vol. 12(17), pages 1-19, September.
    13. Pasichnyi, Oleksii & Wallin, Jörgen & Kordas, Olga, 2019. "Data-driven building archetypes for urban building energy modelling," Energy, Elsevier, vol. 181(C), pages 360-377.
    14. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    15. Hossein Bakhtiari & Jan Akander & Mathias Cehlin & Abolfazl Hayati, 2020. "On the Performance of Night Ventilation in a Historic Office Building in Nordic Climate," Energies, MDPI, vol. 13(16), pages 1-26, August.
    16. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.
    17. Hanan S.S. Ibrahim & Ahmed Z. Khan & Waqas Ahmed Mahar & Shady Attia & Yehya Serag, 2021. "Assessment of Passive Retrofitting Scenarios in Heritage Residential Buildings in Hot, Dry Climates," Energies, MDPI, vol. 14(11), pages 1-27, June.
    18. Soo-Jin Lee & You-Jeong Kim & Hye-Sun Jin & Sung-Im Kim & Soo-Yeon Ha & Seung-Yeong Song, 2019. "Residential End-Use Energy Estimation Models in Korean Apartment Units through Multiple Regression Analysis," Energies, MDPI, vol. 12(12), pages 1-18, June.
    19. Ciulla, G. & D'Amico, A., 2019. "Building energy performance forecasting: A multiple linear regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Couraud, Benoit & Andoni, Merlinda & Robu, Valentin & Norbu, Sonam & Chen, Si & Flynn, David, 2023. "Responsive FLEXibility: A smart local energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5407-:d:1195143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.