IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3963-d277954.html
   My bibliography  Save this article

Experimental Investigation on Heat Transfer Mechanism of Air-Blast-Spray-Cooling System with a Two-Phase Ejector Loop for Aeronautical Application

Author

Listed:
  • Jia-Xin Li

    (School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China)

  • Yun-Ze Li

    (School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
    Institute of Engineering Thermophysics, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
    Advanced Research Center of Thermal and New Energy Technologies, Xingtai Polytechnic College, Xingtai 054035, China)

  • Ben-Yuan Cai

    (School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China)

  • En-Hui Li

    (School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China)

Abstract

This paper presents an air-oriented spray cooling system (SCS) integrated with a two-phase ejector for the thermal management system. Considering its aeronautical application, the spray nozzle in the SCS is an air-blast one. Heat transfer performance (HTP) of air-water spray cooling was studied experimentally on the basis of the ground-based test. Factors including pressure difference between water-inlet-pressure (WIP) and spray cavity one (PDWIC) and the spray volumetric flow rate (SVFR) were investigated and discussed. Under a constant operating condition, the cooling capacity can be promoted by the growth factors of the PDWIC and SVFR with the values from 51.90 kPa to 235.35 kPa and 3.91 L ⋅ h − 1 to 14.53 L ⋅ h − 1 , respectively. Under the same heating power, HTP is proportional to the two dimensionless parameters Reynolds number and Weber number due to the growth of droplet-impacting velocity and droplet size as the increasing of PDWIC or SVFR. Additionally, compared with the factor of the droplet size, the HTP is more sensitive to the variation in the droplet-impacting velocity. Based on the experimental data, an empirical experimental correlation for the prediction of the dimensionless parameter Nusselt number in the non-boiling region with the relative error of only ± 10 % was obtained based on the least square method.

Suggested Citation

  • Jia-Xin Li & Yun-Ze Li & Ben-Yuan Cai & En-Hui Li, 2019. "Experimental Investigation on Heat Transfer Mechanism of Air-Blast-Spray-Cooling System with a Two-Phase Ejector Loop for Aeronautical Application," Energies, MDPI, vol. 12(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3963-:d:277954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3963/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3963/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Wen-Long & Zhang, Wei-Wei & Chen, Hua & Hu, Lei, 2016. "Spray cooling and flash evaporation cooling: The current development and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 614-628.
    2. Fan, Junliang & Chen, Baiquan & Wu, Lifeng & Zhang, Fucang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions," Energy, Elsevier, vol. 144(C), pages 903-914.
    3. Bian, Jiang & Cao, Xuewen & Yang, Wen & Edem, Mawugbe Ayivi & Yin, Pengbo & Jiang, Wenming, 2018. "Supersonic liquefaction properties of natural gas in the Laval nozzle," Energy, Elsevier, vol. 159(C), pages 706-715.
    4. Tang, Yongzhi & Liu, Zhongliang & Shi, Can & Li, Yanxia, 2018. "A novel steam ejector with pressure regulation to optimize the entrained flow passage for performance improvement in MED-TVC desalination system," Energy, Elsevier, vol. 158(C), pages 305-316.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
    2. Bian, Jiang & Cao, Xuewen & Teng, Lin & Sun, Yuan & Gao, Song, 2019. "Effects of inlet parameters on the supersonic condensation and swirling characteristics of binary natural gas mixture," Energy, Elsevier, vol. 188(C).
    3. Tang, Yongzhi & Yuan, Jiali & Liu, Zhongliang & Feng, Qing & Gong, Xiaolong & Lu, Lin & Chua, Kian Jon, 2022. "Study on evolution laws of two-phase choking flow and entrainment performance of steam ejector oriented towards MED-TVC desalination system," Energy, Elsevier, vol. 242(C).
    4. Bian, Jiang & Cao, Xuewen & Yang, Wen & Song, Xiaodan & Xiang, Chengcheng & Gao, Song, 2019. "Condensation characteristics of natural gas in the supersonic liquefaction process," Energy, Elsevier, vol. 168(C), pages 99-110.
    5. Olubayo M. Babatunde & Josiah L. Munda & Yskandar Hamam, 2020. "Exploring the Potentials of Artificial Neural Network Trained with Differential Evolution for Estimating Global Solar Radiation," Energies, MDPI, vol. 13(10), pages 1-18, May.
    6. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    7. Ding, Hongbing & Zhang, Yu & Sun, Chunqian & Yang, Yan & Wen, Chuang, 2022. "Numerical simulation of supersonic condensation flows using Eulerian-Lagrangian and Eulerian wall film models," Energy, Elsevier, vol. 258(C).
    8. Peng, Tian & Zhang, Chu & Zhou, Jianzhong & Nazir, Muhammad Shahzad, 2021. "An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting," Energy, Elsevier, vol. 221(C).
    9. Wu, Shiguang & Zhao, Bangjian & Tan, Jun & Zhao, Yongjiang & Zhai, Yujia & Xue, Renjun & Tan, Han & Ma, Dong & Wu, Dirui & Dang, Haizheng, 2023. "Thermodynamic study on throttling process of Joule-Thomson cooler to improve helium liquefaction performance between 2 K and 4 K," Energy, Elsevier, vol. 277(C).
    10. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Rodríguez-Suanzes, C., 2022. "Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications," Applied Energy, Elsevier, vol. 305(C).
    11. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Ma, Xin & Bai, Hua, 2019. "Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 168-186.
    12. Zhang, Guojie & Dykas, Sławomir & Li, Pan & Li, Hang & Wang, Junlei, 2020. "Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system," Energy, Elsevier, vol. 212(C).
    13. Qiu, Rangjian & Li, Longan & Wu, Lifeng & Agathokleous, Evgenios & Liu, Chunwei & Zhang, Baozhong & Luo, Yufeng & Sun, Shanlei, 2022. "Modeling daily global solar radiation using only temperature data: Past, development, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    14. Guosheng Duan & Lifeng Wu & Fa Liu & Yicheng Wang & Shaofei Wu, 2022. "Improvement in Solar-Radiation Forecasting Based on Evolutionary KNEA Method and Numerical Weather Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, June.
    15. Chen, Lin & Yu, Wenbing & Zhang, Tianqi & Yi, Xin, 2023. "Asymmetric talik formation beneath the embankment of Qinghai-Tibet Highway triggered by the sunny-shady effect," Energy, Elsevier, vol. 266(C).
    16. Li, Zhuoran & Zhang, Caigong & Li, Changjun & Jia, Wenlong, 2022. "Thermodynamic study on the natural gas condensation in the throttle valve for the efficiency of the natural gas transport system," Applied Energy, Elsevier, vol. 322(C).
    17. Bian, Jiang & Guo, Dan & Li, Yuxuan & Cai, Weihua & Hua, Yihuai & Cao, Xuewen, 2022. "Homogeneous nucleation and condensation mechanism of methane gas: A molecular simulation perspective," Energy, Elsevier, vol. 249(C).
    18. Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
    19. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
    20. Liu, Yang & Cao, Xuewen & Guo, Dan & Cao, Hengguang & Bian, Jiang, 2023. "Influence of shock wave/boundary layer interaction on condensation flow and energy recovery in supersonic nozzle," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3963-:d:277954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.