IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3832-d274996.html
   My bibliography  Save this article

Day-Ahead Robust Economic Dispatch Considering Renewable Energy and Concentrated Solar Power Plants

Author

Listed:
  • Jiawen Bai

    (School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710079, China)

  • Tao Ding

    (School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710079, China)

  • Zhe Wang

    (State Grid Jibei Electric Power Company Ltd., Beijing 100054, China)

  • Jianhua Chen

    (State Grid Jibei Electric Power Company Ltd., Beijing 100054, China)

Abstract

A concentrated solar power (CSP) plant with energy storage systems has excellent scheduling flexibility and superiority to traditional thermal power generation systems. In this paper, the operation mechanism and operational constraints of the CSP plant are specified. Furthermore, the uncertainty of the solar energy received by the solar field is considered and a robust economic dispatch model with CSP plants and renewable energy resources is proposed, where uncertainty is adjusted by the automatic generation control (AGC) regulation in the day-ahead ancillary market, so that the system security is guaranteed under any realization of the uncertainty. Finally, the proposed robust economic dispatch has been studied on an improved IEEE 30-bus test system, and the results verify the proposed model.

Suggested Citation

  • Jiawen Bai & Tao Ding & Zhe Wang & Jianhua Chen, 2019. "Day-Ahead Robust Economic Dispatch Considering Renewable Energy and Concentrated Solar Power Plants," Energies, MDPI, vol. 12(20), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3832-:d:274996
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3832/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3832/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cot-Gores, Jaume & Castell, Albert & Cabeza, Luisa F., 2012. "Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5207-5224.
    2. Hong Lu & Caixia Wang & Qionghui Li & Ryan Wiser & Kevin Porter, 2019. "Reducing wind power curtailment in China: comparing the roles of coal power flexibility and improved dispatch," Climate Policy, Taylor & Francis Journals, vol. 19(5), pages 623-635, May.
    3. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    4. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    5. Nonnenmacher, Lukas & Kaur, Amanpreet & Coimbra, Carlos F.M., 2016. "Day-ahead resource forecasting for concentrated solar power integration," Renewable Energy, Elsevier, vol. 86(C), pages 866-876.
    6. Neves, Diana & Silva, Carlos A., 2015. "Optimal electricity dispatch on isolated mini-grids using a demand response strategy for thermal storage backup with genetic algorithms," Energy, Elsevier, vol. 82(C), pages 436-445.
    7. Usaola, Julio, 2012. "Participation of CSP plants in the reserve markets: A new challenge for regulators," Energy Policy, Elsevier, vol. 49(C), pages 562-571.
    8. Martinek, Janna & Jorgenson, Jennie & Mehos, Mark & Denholm, Paul, 2018. "A comparison of price-taker and production cost models for determining system value, revenue, and scheduling of concentrating solar power plants," Applied Energy, Elsevier, vol. 231(C), pages 854-865.
    9. Bayrak, Fatih & Abu-Hamdeh, Nidal & Alnefaie, Khaled A. & Öztop, Hakan F., 2017. "A review on exergy analysis of solar electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 755-770.
    10. Sharma, Chandan & Sharma, Ashish K. & Mullick, Subhash C. & Kandpal, Tara C., 2016. "A study of the effect of design parameters on the performance of linear solar concentrator based thermal power plants in India," Renewable Energy, Elsevier, vol. 87(P1), pages 666-675.
    11. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Von Bremen, L. & Tovar-Pescador, J., 2015. "Combining wind farms with concentrating solar plants to provide stable renewable power," Renewable Energy, Elsevier, vol. 76(C), pages 539-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianhua Gao & Shangshang Wei & Chunlin Xia & Yiguo Li, 2022. "Flexible Operation of Concentrating Solar Power Plant with Thermal Energy Storage Based on a Coordinated Control Strategy," Energies, MDPI, vol. 15(13), pages 1-16, July.
    2. Yachao Pan & Fubin Yang & Hongguang Zhang & Yinlian Yan & Anren Yang & Jia Liang & Mingzhe Yu, 2022. "Performance Prediction and Working Fluid Active Design of Organic Rankine Cycle Based on Molecular Structure," Energies, MDPI, vol. 15(21), pages 1-22, November.
    3. Oluwaseun M. Akeyo & Aron Patrick & Dan M. Ionel, 2020. "Study of Renewable Energy Penetration on a Benchmark Generation and Transmission System," Energies, MDPI, vol. 14(1), pages 1-14, December.
    4. Ruifeng Shi & Penghui Zhang & Jie Zhang & Li Niu & Xiaoting Han, 2020. "Multidispatch for Microgrid including Renewable Energy and Electric Vehicles with Robust Optimization Algorithm," Energies, MDPI, vol. 13(11), pages 1-15, June.
    5. Mihail Busu, 2020. "Analyzing the Impact of the Renewable Energy Sources on Economic Growth at the EU Level Using an ARDL Model," Mathematics, MDPI, vol. 8(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Chenjia & Shao, Chengcheng & Wang, Xifan, 2021. "CSP clustering in unit commitment for power system production cost modeling," Renewable Energy, Elsevier, vol. 168(C), pages 1217-1228.
    2. Müller, Danny & Knoll, Christian & Gravogl, Georg & Jordan, Christian & Eitenberger, Elisabeth & Friedbacher, Gernot & Artner, Werner & Welch, Jan M. & Werner, Andreas & Harasek, Michael & Miletich, R, 2021. "Medium-temperature thermochemical energy storage with transition metal ammoniates – A systematic material comparison," Applied Energy, Elsevier, vol. 285(C).
    3. Coronas, Sergio & Martín, Helena & de la Hoz, Jordi & García de Vicuña, Luis & Castilla, Miguel, 2021. "MONTE-CARLO probabilistic valuation of concentrated solar power systems in Spain under the 2014 retroactive regulatory framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Pousinho, H.M.I. & Esteves, J. & Mendes, V.M.F. & Collares-Pereira, M. & Pereira Cabrita, C., 2016. "Bilevel approach to wind-CSP day-ahead scheduling with spinning reserve under controllable degree of trust," Renewable Energy, Elsevier, vol. 85(C), pages 917-927.
    5. Marín, P.E. & Milian, Y. & Ushak, S. & Cabeza, L.F. & Grágeda, M. & Shire, G.S.F., 2021. "Lithium compounds for thermochemical energy storage: A state-of-the-art review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Kahvecioğlu, Gökçe & Morton, David P. & Wagner, Michael J., 2022. "Dispatch optimization of a concentrating solar power system under uncertain solar irradiance and energy prices," Applied Energy, Elsevier, vol. 326(C).
    7. Murphy, C.A. & Schleifer, A. & Eurek, K., 2021. "A taxonomy of systems that combine utility-scale renewable energy and energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.
    9. Zheng, Hangbin & Liu, Xianglei & Xuan, Yimin & Song, Chao & Liu, Dachuan & Zhu, Qibin & Zhu, Zhonghui & Gao, Ke & Li, Yongliang & Ding, Yulong, 2021. "Thermochemical heat storage performances of fluidized black CaCO3 pellets under direct concentrated solar irradiation," Renewable Energy, Elsevier, vol. 178(C), pages 1353-1369.
    10. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
    12. Kaya, Hüseyin & Arslan, Kamil & Eltugral, Nurettin, 2018. "Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids," Renewable Energy, Elsevier, vol. 122(C), pages 329-338.
    13. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    14. Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
    15. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    16. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    17. Farzaneh-Gord, M. & Arabkoohsar, A. & Deymi Dasht-bayaz, M. & Machado, L. & Koury, R.N.N., 2014. "Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters," Renewable Energy, Elsevier, vol. 72(C), pages 258-270.
    18. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    20. Mario Cascetta & Fabio Serra & Simone Arena & Efisio Casti & Giorgio Cau & Pierpaolo Puddu, 2016. "Experimental and Numerical Research Activity on a Packed Bed TES System," Energies, MDPI, vol. 9(9), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3832-:d:274996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.