IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i1p186-d195607.html
   My bibliography  Save this article

Analysis of the Performance of Various PV Module Technologies in Peru

Author

Listed:
  • Irene Romero-Fiances

    (IDEA Research Group, University of Jaén, Campus de Las Lagunillas, 23071 Jaén, Spain)

  • Emilio Muñoz-Cerón

    (IDEA Research Group, University of Jaén, Campus de Las Lagunillas, 23071 Jaén, Spain)

  • Rafael Espinoza-Paredes

    (Renewable Energy Center, National Engineering University, Av. Túpac Amaru 210, Of. B1-260, Lima 25, Peru)

  • Gustavo Nofuentes

    (IDEA Research Group, University of Jaén, Campus de Las Lagunillas, 23071 Jaén, Spain)

  • Juan De la Casa

    (IDEA Research Group, University of Jaén, Campus de Las Lagunillas, 23071 Jaén, Spain)

Abstract

A knowledge gap exists about the actual behavior of PV grid-connected systems (PVGCS) using various PV technologies in Peru. This paper presents the results of an over three-year-long performance evaluation of a 3.3-kWp monocrystalline silicon (sc-Si) PVGCS located in Arequipa, a 3.3-kWp sc-Si PVGCS located in Tacna, and a 3-kWp policrystalline (mc-Si) PVGCS located in Lima. An assessment of the performance of a 3.5-kWp amorphous silicon/crystalline silicon hetero-junction (a-Si/µc-Si) PVGCS during over one and a half years of being in Lima is also presented. The annual final yields obtained lie within 1770–1992 kWh/kW, 1505–1540 kWh/kW, and 736–833 kWh/kW for Arequipa, Tacna, and Lima, respectively, while the annual PV array energy yield achieved by a-Si/µc-Si is 1338 kWh/kW. The annual performance ratio stays in the vicinity of 0.83 for sc-Si in Arequipa and Tacna while this parameter ranges from 0.70 to 0.77 for mc-Si in Lima. An outstanding DC annual performance ratio of 0.97 is found for a-Si/µc-Si in the latter site. The use of sc-Si and presumably, mc-Si PV modules in desert climates, such as that of Arequipa and Tacna, is encouraged. However, sc-Si and presumably, mc-Si-technologies experience remarkable temperature and low irradiance losses in Lima. By contrast, a-Si/µc-Si PV modules perform much better in the latter site thanks to being less influenced by both temperature and low light levels.

Suggested Citation

  • Irene Romero-Fiances & Emilio Muñoz-Cerón & Rafael Espinoza-Paredes & Gustavo Nofuentes & Juan De la Casa, 2019. "Analysis of the Performance of Various PV Module Technologies in Peru," Energies, MDPI, vol. 12(1), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:186-:d:195607
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/186/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/186/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muñoz, J.V. & Nofuentes, G. & Aguilera, J. & Fuentes, M. & Vidal, P.G., 2011. "Procedure to carry out quality checks in photovoltaic grid-connected systems: Six cases of study," Applied Energy, Elsevier, vol. 88(8), pages 2863-2870, August.
    2. Abdallah, Amir & Martinez, Diego & Figgis, Benjamin & El Daif, Ounsi, 2016. "Performance of Silicon Heterojunction Photovoltaic modules in Qatar climatic conditions," Renewable Energy, Elsevier, vol. 97(C), pages 860-865.
    3. Al-Sabounchi, Ammar M. & Yalyali, Saeed A. & Al-Thani, Hamda A., 2013. "Design and performance evaluation of a photovoltaic grid-connected system in hot weather conditions," Renewable Energy, Elsevier, vol. 53(C), pages 71-78.
    4. Adinoyi, Muhammed J. & Said, Syed A.M., 2013. "Effect of dust accumulation on the power outputs of solar photovoltaic modules," Renewable Energy, Elsevier, vol. 60(C), pages 633-636.
    5. Pietruszko, S. M. & Gradzki, M., 2003. "Performance of a grid connected small PV system in Poland," Applied Energy, Elsevier, vol. 74(1-2), pages 177-184, January.
    6. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    7. Zambrano-Monserrate, Manuel A. & Silva-Zambrano, Carlos A. & Davalos-Penafiel, Jose L. & Zambrano-Monserrate, Andrea & Ruano, Maria Alejandra, 2018. "Testing environmental Kuznets curve hypothesis in Peru: The role of renewable electricity, petroleum and dry natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4170-4178.
    8. Ozden, Talat & Akinoglu, Bulent G. & Turan, Rasit, 2017. "Long term outdoor performances of three different on-grid PV arrays in central Anatolia – An extended analysis," Renewable Energy, Elsevier, vol. 101(C), pages 182-195.
    9. Nofuentes, Gustavo & de la Casa, Juan & Solís-Alemán, Ernesto M. & Fernández, Eduardo F., 2017. "Spectral impact on PV performance in mid-latitude sunny inland sites: Experimental vs. modelled results," Energy, Elsevier, vol. 141(C), pages 1857-1868.
    10. Ana Maria Gracia Amillo & Thomas Huld & Paraskevi Vourlioti & Richard Müller & Matthew Norton, 2015. "Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies," Energies, MDPI, vol. 8(5), pages 1-34, April.
    11. Phinikarides, Alexander & Makrides, George & Zinsser, Bastian & Schubert, Markus & Georghiou, George E., 2015. "Analysis of photovoltaic system performance time series: Seasonality and performance loss," Renewable Energy, Elsevier, vol. 77(C), pages 51-63.
    12. de la Parra, I. & Muñoz, M. & Lorenzo, E. & García, M. & Marcos, J. & Martínez-Moreno, F., 2017. "PV performance modelling: A review in the light of quality assurance for large PV plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 780-797.
    13. Bakos, G.C., 2009. "Distributed power generation: A case study of small scale PV power plant in Greece," Applied Energy, Elsevier, vol. 86(9), pages 1757-1766, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thopil, George Alex & Sachse, Christiaan Eddie & Lalk, Jörg & Thopil, Miriam Sara, 2020. "Techno-economic performance comparison of crystalline and thin film PV panels under varying meteorological conditions: A high solar resource southern hemisphere case," Applied Energy, Elsevier, vol. 275(C).
    2. Conde, Luis A. & Angulo, José R. & Sevillano-Bendezú, Miguel Á. & Nofuentes, Gustavo & Töfflinger, Jan A. & de la Casa, Juan, 2021. "Spectral effects on the energy yield of various photovoltaic technologies in Lima (Peru)," Energy, Elsevier, vol. 223(C).
    3. Assoa, Y.B. & Levrard, D., 2020. "A lightweight triangular building integrated photovoltaic module," Applied Energy, Elsevier, vol. 279(C).
    4. Adar, Mustapha & Najih, Youssef & Gouskir, Mohamed & Chebak, Ahmed & Mabrouki, Mustapha & Bennouna, Amin, 2020. "Three PV plants performance analysis using the principal component analysis method," Energy, Elsevier, vol. 207(C).
    5. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    6. Mohamed Derbeli & Oscar Barambones & Jose Antonio Ramos-Hernanz & Lassaad Sbita, 2019. "Real-Time Implementation of a Super Twisting Algorithm for PEM Fuel Cell Power System," Energies, MDPI, vol. 12(9), pages 1-20, April.
    7. Fadhil Y. Al-Aboosi & Abdullah F. Al-Aboosi, 2021. "Preliminary Evaluation of a Rooftop Grid-Connected Photovoltaic System Installation under the Climatic Conditions of Texas (USA)," Energies, MDPI, vol. 14(3), pages 1-30, January.
    8. Deepak Jain Veerendra Kumar & Lelia Deville & Kenneth A. Ritter & Johnathan Richard Raush & Farzad Ferdowsi & Raju Gottumukkala & Terrence Lynn Chambers, 2022. "Performance Evaluation of 1.1 MW Grid-Connected Solar Photovoltaic Power Plant in Louisiana," Energies, MDPI, vol. 15(9), pages 1-21, May.
    9. Agata Zdyb & Slawomir Gulkowski, 2020. "Performance Assessment of Four Different Photovoltaic Technologies in Poland," Energies, MDPI, vol. 13(1), pages 1-17, January.
    10. Slawomir Gulkowski, 2022. "Specific Yield Analysis of the Rooftop PV Systems Located in South-Eastern Poland," Energies, MDPI, vol. 15(10), pages 1-20, May.
    11. Ochuko Kelvin Overen & Edson Leroy Meyer, 2022. "Solar Energy Resources and Photovoltaic Power Potential of an Underutilised Region: A Case of Alice, South Africa," Energies, MDPI, vol. 15(13), pages 1-29, June.
    12. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2020. "Global available solar energy under physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 257(C).
    13. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    14. Romero-Fiances, Irene & Livera, Andreas & Theristis, Marios & Makrides, George & Stein, Joshua S. & Nofuentes, Gustavo & de la Casa, Juan & Georghiou, George E., 2022. "Impact of duration and missing data on the long-term photovoltaic degradation rate estimation," Renewable Energy, Elsevier, vol. 181(C), pages 738-748.
    15. Slawomir Gulkowski, 2023. "Modeling and Experimental Studies of the Photovoltaic System Performance in Climate Conditions of Poland," Energies, MDPI, vol. 16(20), pages 1-16, October.
    16. David Leitão & João Paulo N. Torres & João F. P. Fernandes, 2020. "Spectral Irradiance Influence on Solar Cells Efficiency," Energies, MDPI, vol. 13(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agata Zdyb & Slawomir Gulkowski, 2020. "Performance Assessment of Four Different Photovoltaic Technologies in Poland," Energies, MDPI, vol. 13(1), pages 1-17, January.
    2. Daher, Daha Hassan & Gaillard, Léon & Amara, Mohamed & Ménézo, Christophe, 2018. "Impact of tropical desert maritime climate on the performance of a PV grid-connected power plant," Renewable Energy, Elsevier, vol. 125(C), pages 729-737.
    3. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    4. Zhang, Minhui & Zhang, Qin & Zhou, Dequn & Wang, Lei, 2021. "Punishment or reward? Strategies of stakeholders in the quality of photovoltaic plants based on evolutionary game analysis in China," Energy, Elsevier, vol. 220(C).
    5. Balaska, Amira & Tahri, Ali & Tahri, Fatima & Stambouli, Amine Boudghene, 2017. "Performance assessment of five different photovoltaic module technologies under outdoor conditions in Algeria," Renewable Energy, Elsevier, vol. 107(C), pages 53-60.
    6. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    7. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    8. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    9. Atsu, Divine & Seres, Istvan & Farkas, Istvan, 2021. "The state of solar PV and performance analysis of different PV technologies grid-connected installations in Hungary," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Ameur, Arechkik & Berrada, Asmae & Bouaichi, Abdellatif & Loudiyi, Khalid, 2022. "Long-term performance and degradation analysis of different PV modules under temperate climate," Renewable Energy, Elsevier, vol. 188(C), pages 37-51.
    11. Ullah, Asad & Amin, Amir & Haider, Turab & Saleem, Murtaza & Butt, Nauman Zafar, 2020. "Investigation of soiling effects, dust chemistry and optimum cleaning schedule for PV modules in Lahore, Pakistan," Renewable Energy, Elsevier, vol. 150(C), pages 456-468.
    12. Jamil, Wan Juzaili & Abdul Rahman, Hasimah & Shaari, Sulaiman & Salam, Zainal, 2017. "Performance degradation of photovoltaic power system: Review on mitigation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 876-891.
    13. Purohit, Ishan & Purohit, Pallav, 2018. "Performance assessment of grid-interactive solar photovoltaic projects under India’s national solar mission," Applied Energy, Elsevier, vol. 222(C), pages 25-41.
    14. Romero-Fiances, Irene & Livera, Andreas & Theristis, Marios & Makrides, George & Stein, Joshua S. & Nofuentes, Gustavo & de la Casa, Juan & Georghiou, George E., 2022. "Impact of duration and missing data on the long-term photovoltaic degradation rate estimation," Renewable Energy, Elsevier, vol. 181(C), pages 738-748.
    15. Abraham Alem Kebede & Maitane Berecibar & Thierry Coosemans & Maarten Messagie & Towfik Jemal & Henok Ayele Behabtu & Joeri Van Mierlo, 2020. "A Techno-Economic Optimization and Performance Assessment of a 10 kW P Photovoltaic Grid-Connected System," Sustainability, MDPI, vol. 12(18), pages 1-29, September.
    16. Mehdi, Maryam & Ammari, Nabil & Alami Merrouni, Ahmed & El Gallassi, Hicham & Dahmani, Mohamed & Ghennioui, Abdellatif, 2023. "An experimental comparative analysis of different PV technologies performance including the influence of hot-arid climatic parameters: Toward a realistic yield assessment for desert locations," Renewable Energy, Elsevier, vol. 205(C), pages 695-716.
    17. Emmanuel, Michael & Akinyele, Daniel & Rayudu, Ramesh, 2017. "Techno-economic analysis of a 10 kWp utility interactive photovoltaic system at Maungaraki school, Wellington, New Zealand," Energy, Elsevier, vol. 120(C), pages 573-583.
    18. Gulkowski, Slawomir & Muñoz Diez, José Vicente & Aguilera Tejero, Jorge & Nofuentes, Gustavo, 2019. "Computational modeling and experimental analysis of heterojunction with intrinsic thin-layer photovoltaic module under different environmental conditions," Energy, Elsevier, vol. 172(C), pages 380-390.
    19. Polo, Jesús & Alonso-Abella, Miguel & Martín-Chivelet, Nuria & Alonso-Montesinos, Joaquín & López, Gabriel & Marzo, Aitor & Nofuentes, Gustavo & Vela-Barrionuevo, Nieves, 2020. "Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications," Energy, Elsevier, vol. 190(C).
    20. Mithhu, Md. Mahamudul Hasan & Rima, Tahmina Ahmed & Khan, M. Ryyan, 2021. "Global analysis of optimal cleaning cycle and profit of soiling affected solar panels," Applied Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:186-:d:195607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.