IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920312964.html
   My bibliography  Save this article

A lightweight triangular building integrated photovoltaic module

Author

Listed:
  • Assoa, Y.B.
  • Levrard, D.

Abstract

This work presents the design and the performance evaluation of a novel building integrated photovoltaic module suitable for building with complex envelopes shape, especially geodesic domes. Experimental and numerical studies were realized in order to validate the system installation procedure and integration configurations. An experimental analysis of the thermal behavior and the electrical production of a south–oriented triangular photovoltaic module stuck on a polymer textile was performed in cold season considering four slopes between 0° and 90° in order to represent the dome facets main tilts. The results permitted to evaluate the consistency of the assembly process defined. Moreover, the system electrical efficiency was between 6.5% and 8.5% with an array yield up to 8.8 Wh/Wp. With a PV module heating lower than 50 °C, all slopes considered gave satisfactory thermal and electrical results. Finally, a thermal and electrical numerical model of the system developed and validated experimentally permitted to confirm tests observations. A calculated monthly mean module temperature lower than 22 °C, a monthly array energy yield up to 54.8 Wh/Wp and an annual cumulative energy production up to 5.9 kWh highlighted that slopes between 30° and 60° represents good compromise. As further studies, different weather conditions, orientations and aspects will be considered using the numerical model for the system configuration optimization.

Suggested Citation

  • Assoa, Y.B. & Levrard, D., 2020. "A lightweight triangular building integrated photovoltaic module," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312964
    DOI: 10.1016/j.apenergy.2020.115816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920312964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdelrazik, Ahmed S. & Al-Sulaiman, FA & Saidur, R. & Ben-Mansour, R., 2018. "A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 110-129.
    2. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    3. Porta-Gándara, M.A. & Gómez-Muñoz, V., 2005. "Solar performance of an electrochromic geodesic dome roof," Energy, Elsevier, vol. 30(13), pages 2474-2486.
    4. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    5. Assoa, Ya Brigitte & Gaillard, Leon & Ménézo, Christophe & Negri, Nicolas & Sauzedde, François, 2018. "Dynamic prediction of a building integrated photovoltaic system thermal behaviour," Applied Energy, Elsevier, vol. 214(C), pages 73-82.
    6. Irene Romero-Fiances & Emilio Muñoz-Cerón & Rafael Espinoza-Paredes & Gustavo Nofuentes & Juan De la Casa, 2019. "Analysis of the Performance of Various PV Module Technologies in Peru," Energies, MDPI, vol. 12(1), pages 1-19, January.
    7. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    8. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    9. Hughes, Laurie & Bristow, Noel & Korochkina, Tatyana & Sanchez, Pascal & Gomez, David & Kettle, Jeff & Gethin, David, 2018. "Assessing the potential of steel as a substrate for building integrated photovoltaic applications," Applied Energy, Elsevier, vol. 229(C), pages 209-223.
    10. Walker, Linus & Hofer, Johannes & Schlueter, Arno, 2019. "High-resolution, parametric BIPV and electrical systems modeling and design," Applied Energy, Elsevier, vol. 238(C), pages 164-179.
    11. Moreno-Sáez, Rafael & Sidrach-de-Cardona, Mariano & Mora-López, Llanos, 2016. "Analysis and characterization of photovoltaic modules of three different thin-film technologies in outdoor conditions," Applied Energy, Elsevier, vol. 162(C), pages 827-838.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Gonçalves, Juliana E. & van Hooff, Twan & Saelens, Dirk, 2021. "Simulating building integrated photovoltaic facades: Comparison to experimental data and evaluation of modelling complexity," Applied Energy, Elsevier, vol. 281(C).
    4. Mukhamad Faeshol Umam & Md. Hasanuzzaman & Nasrudin Abd Rahim, 2022. "Global Advancement of Nanofluid-Based Sheet and Tube Collectors for a Photovoltaic Thermal System," Energies, MDPI, vol. 15(15), pages 1-37, August.
    5. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Assoa, Ya Brigitte & Valencia-Caballero, Daniel & Rico, Elena & Del Caño, Teodosio & Furtado, Joao Victor, 2023. "Performance of a large size photovoltaic module for façade integration," Renewable Energy, Elsevier, vol. 211(C), pages 903-917.
    7. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Serrano-Luján, L. & Toledo, C. & Colmenar, J.M. & Abad, J. & Urbina, A., 2022. "Accurate thermal prediction model for building-integrated photovoltaics systems using guided artificial intelligence algorithms," Applied Energy, Elsevier, vol. 315(C).
    9. Maturo, Anthony & Buonomano, Annamaria & Athienitis, Andreas, 2022. "Design for energy flexibility in smart buildings through solar based and thermal storage systems: Modelling, simulation and control for the system optimization," Energy, Elsevier, vol. 260(C).
    10. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    11. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Hu, Mingke & Zhao, Bin & Ao, Xianze & Ren, Xiao & Cao, Jingyu & Wang, Qiliang & Su, Yuehong & Pei, Gang, 2020. "Performance assessment of a trifunctional system integrating solar PV, solar thermal, and radiative sky cooling," Applied Energy, Elsevier, vol. 260(C).
    13. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
    15. Zhang, Chenyu & Wang, Ning & Xu, Hongtao & Fang, Yuan & Yang, Qiguo & Talkhoncheh, Fariborz Karimi, 2023. "Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins," Energy, Elsevier, vol. 263(PA).
    16. Tian, Xinyi & Wang, Jun & Yuan, Shuang & Ji, Jie & Ke, Wei & Wang, Chuyao, 2023. "Investigation on the electrical performance of a curved PV roof integrated with CIGS cells for traditional Chinese houses," Energy, Elsevier, vol. 263(PC).
    17. Ahmad Hasan & Sarah Josephine McCormack & Ming Jun Huang & Brian Norton, 2014. "Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM) System through Temperature Regulation and Performance Enhancement of Photovoltaics," Energies, MDPI, vol. 7(3), pages 1-14, March.
    18. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    19. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    20. Rustemli, Sabir & Dincer, Furkan & Unal, Emin & Karaaslan, Muharrem & Sabah, Cumali, 2013. "The analysis on sun tracking and cooling systems for photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 598-603.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.