IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3420-d810458.html
   My bibliography  Save this article

Performance Evaluation of 1.1 MW Grid-Connected Solar Photovoltaic Power Plant in Louisiana

Author

Listed:
  • Deepak Jain Veerendra Kumar

    (Department of Mechanical Engineering, University of Louisiana at Lafayette, 250 E. Lewis Street, Lafayette, LA 70503, USA)

  • Lelia Deville

    (Department of Mechanical Engineering, University of Louisiana at Lafayette, 250 E. Lewis Street, Lafayette, LA 70503, USA)

  • Kenneth A. Ritter

    (Department of Mechanical Engineering, University of Louisiana at Lafayette, 250 E. Lewis Street, Lafayette, LA 70503, USA)

  • Johnathan Richard Raush

    (Department of Mechanical Engineering, University of Louisiana at Lafayette, 250 E. Lewis Street, Lafayette, LA 70503, USA)

  • Farzad Ferdowsi

    (Department of Electrical and Computer Engineering, University of Louisiana at Lafayette, 131 Rex Street, Lafayette, LA 70503, USA)

  • Raju Gottumukkala

    (Department of Mechanical Engineering, University of Louisiana at Lafayette, 250 E. Lewis Street, Lafayette, LA 70503, USA
    Informatics Research Institute, University of Louisiana, Lafayette, LA 70504, USA)

  • Terrence Lynn Chambers

    (Department of Mechanical Engineering, University of Louisiana at Lafayette, 250 E. Lewis Street, Lafayette, LA 70503, USA)

Abstract

In this work, performance analysis and comparison of three photovoltaic technologies are carried out in the Louisiana climate. During the calendar year of 2018, the University of Louisiana at Lafayette constructed and commissioned a 1.1 MW solar photovoltaic power plant for researching solar power in southern Louisiana and for partial energy demand of the university. It was one of the largest solar photovoltaic power plants in Louisiana when constructed and receives an annual solar insolation of 4.88 kWh/m 2 /d at latitude minus five degrees (25°) tilt. The solar power plant has a total of 4142 modules and incorporates three module technologies. Preliminary performance data from the system level are presented. The evaluation of different technologies is based on final yield, performance ratio, and capacity factor for one year from September 2019 to August 2020. An economic analysis is carried out using levelized cost of energy for the three photovoltaic (PV) technologies. Finally, the results are compared with simulated results of System Advisor Model (SAM) and PVsyst. It was found that copper indium gallium selenide (CIGS) has better performance ratio of 0.79 compared with monocrystalline silicon and polycrystalline silicon, which have performance ratios of 0.77 and 0.73, respectively. The simulation results correlated with the actual performance of the plant.

Suggested Citation

  • Deepak Jain Veerendra Kumar & Lelia Deville & Kenneth A. Ritter & Johnathan Richard Raush & Farzad Ferdowsi & Raju Gottumukkala & Terrence Lynn Chambers, 2022. "Performance Evaluation of 1.1 MW Grid-Connected Solar Photovoltaic Power Plant in Louisiana," Energies, MDPI, vol. 15(9), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3420-:d:810458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3420/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3420/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saber, Esmail M. & Lee, Siew Eang & Manthapuri, Sumanth & Yi, Wang & Deb, Chirag, 2014. "PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings," Energy, Elsevier, vol. 71(C), pages 588-595.
    2. Muehleisen, W. & Loeschnig, J. & Feichtner, M. & Burgers, A.R. & Bende, E.E. & Zamini, S. & Yerasimou, Y. & Kosel, J. & Hirschl, C. & Georghiou, G.E., 2021. "Energy yield measurement of an elevated PV system on a white flat roof and a performance comparison of monofacial and bifacial modules," Renewable Energy, Elsevier, vol. 170(C), pages 613-619.
    3. Irene Romero-Fiances & Emilio Muñoz-Cerón & Rafael Espinoza-Paredes & Gustavo Nofuentes & Juan De la Casa, 2019. "Analysis of the Performance of Various PV Module Technologies in Peru," Energies, MDPI, vol. 12(1), pages 1-19, January.
    4. Sharma, Vikrant & Chandel, S.S., 2013. "Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India," Energy, Elsevier, vol. 55(C), pages 476-485.
    5. AL-Rasheedi, Majed & Gueymard, Christian A. & Al-Khayat, Mohammad & Ismail, Alaa & Lee, Jared A. & Al-Duaj, Hamad, 2020. "Performance evaluation of a utility-scale dual-technology photovoltaic power plant at the Shagaya Renewable Energy Park in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. do Nascimento, Lucas Rafael & Braga, Marília & Campos, Rafael Antunes & Naspolini, Helena Flávia & Rüther, Ricardo, 2020. "Performance assessment of solar photovoltaic technologies under different climatic conditions in Brazil," Renewable Energy, Elsevier, vol. 146(C), pages 1070-1082.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2020. "Global available solar energy under physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 257(C).
    2. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    3. Agata Zdyb & Slawomir Gulkowski, 2020. "Performance Assessment of Four Different Photovoltaic Technologies in Poland," Energies, MDPI, vol. 13(1), pages 1-17, January.
    4. Ephraim Bonah Agyekum & Usman Mehmood & Salah Kamel & Mokhtar Shouran & Elmazeg Elgamli & Tomiwa Sunday Adebayo, 2022. "Technical Performance Prediction and Employment Potential of Solar PV Systems in Cold Countries," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    5. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    6. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    7. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    8. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    9. Prakash, Vrishab & Ghosh, Sajal & Kanjilal, Kakali, 2020. "Costs of avoided carbon emission from thermal and renewable sources of power in India and policy implications," Energy, Elsevier, vol. 200(C).
    10. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    11. Rajput, Pramod & Tiwari, G.N. & Sastry, O.S., 2017. "Thermal modelling with experimental validation and economic analysis of mono crystalline silicon photovoltaic module on the basis of degradation study," Energy, Elsevier, vol. 120(C), pages 731-739.
    12. Mohamed Benghanem & Sofiane Haddad & Ahmed Alzahrani & Adel Mellit & Hamad Almohamadi & Muna Khushaim & Mohamed Salah Aida, 2023. "Evaluation of the Performance of Polycrystalline and Monocrystalline PV Technologies in a Hot and Arid Region: An Experimental Analysis," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    13. Yadav, Amit Kumar & Sharma, Vikrant & Malik, Hasmat & Chandel, S.S., 2018. "Daily array yield prediction of grid-interactive photovoltaic plant using relief attribute evaluator based Radial Basis Function Neural Network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2115-2127.
    14. Adar, Mustapha & Najih, Youssef & Gouskir, Mohamed & Chebak, Ahmed & Mabrouki, Mustapha & Bennouna, Amin, 2020. "Three PV plants performance analysis using the principal component analysis method," Energy, Elsevier, vol. 207(C).
    15. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    16. Mohamed Derbeli & Oscar Barambones & Jose Antonio Ramos-Hernanz & Lassaad Sbita, 2019. "Real-Time Implementation of a Super Twisting Algorithm for PEM Fuel Cell Power System," Energies, MDPI, vol. 12(9), pages 1-20, April.
    17. Amir A. Imam & Yusuf A. Al-Turki & Sreerama Kumar R., 2019. "Techno-Economic Feasibility Assessment of Grid-Connected PV Systems for Residential Buildings in Saudi Arabia—A Case Study," Sustainability, MDPI, vol. 12(1), pages 1-25, December.
    18. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    19. Hamid Iftikhar & Eduardo Sarquis & P. J. Costa Branco, 2021. "Why Can Simple Operation and Maintenance (O&M) Practices in Large-Scale Grid-Connected PV Power Plants Play a Key Role in Improving Its Energy Output?," Energies, MDPI, vol. 14(13), pages 1-29, June.
    20. Ayman Alhejji & Alban Kuriqi & Jakub Jurasz & Farag K. Abo-Elyousr, 2021. "Energy Harvesting and Water Saving in Arid Regions via Solar PV Accommodation in Irrigation Canals," Energies, MDPI, vol. 14(9), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3420-:d:810458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.