IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3686-d271093.html
   My bibliography  Save this article

A Dynamic Analysis of the Multi-Stack SOFC-CHP System for Power Modulation

Author

Listed:
  • Cheng-Hao Yang

    (Hydrogen & Fuel Cell Project, Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, 7F, No.301, Gaofa 3rd Rd., Guiren Dist., Tainan 71150, Taiwan)

  • Shing-Cheng Chang

    (Hydrogen & Fuel Cell Project, Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, 7F, No.301, Gaofa 3rd Rd., Guiren Dist., Tainan 71150, Taiwan)

  • Yen-Hsin Chan

    (Hydrogen & Fuel Cell Project, Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, 7F, No.301, Gaofa 3rd Rd., Guiren Dist., Tainan 71150, Taiwan)

  • Wen-Sheng Chang

    (Hydrogen & Fuel Cell Project, Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, 7F, No.301, Gaofa 3rd Rd., Guiren Dist., Tainan 71150, Taiwan)

Abstract

This paper performs a dynamic analysis of a 10-kW solid oxide fuel cell/combined heat and power (SOFC-CHP) system with a multi-stack module via numerical simulations. The performance of stacks, tail gas burners, heat exchangers, and fuel reformers are modeled by the MATLAB/Simulink module. The effects of fuel and air maldistribution on SOFC-CHP systems are addressed in this work. A two-stack module for 10-kW power generation is adopted to represent the multi-stack module with high power modulation. The air flow rate and operating current, which are related to the fuel use rate of an SOFC system, should be optimally regulated to perform with maximum power generation and efficiency. The proposed dynamic analysis shows that the operating temperatures of the two stacks have a difference of 33 K, which results in a reduced total power generation of 9.77 kW, with inconsistent fuel use (FU) rates of 78.3% and 56.8% for the two stacks. With the optimal control strategy, the output power is increased to 10.6 kW, an increment of 8.5%, and the FU rates of the two stacks are improved to 79% and 70%, respectively. As a potential distributed power generator, the long-term effects of the studied SOFC-CHP systems are also investigated. The dynamic analysis of the long-term operating SOFC-CHP system shows that the total daily output power can be increased 7.34% by using the optimal control strategy.

Suggested Citation

  • Cheng-Hao Yang & Shing-Cheng Chang & Yen-Hsin Chan & Wen-Sheng Chang, 2019. "A Dynamic Analysis of the Multi-Stack SOFC-CHP System for Power Modulation," Energies, MDPI, vol. 12(19), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3686-:d:271093
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barelli, L. & Bidini, G. & Ottaviano, A., 2016. "Solid oxide fuel cell modelling: Electrochemical performance and thermal management during load-following operation," Energy, Elsevier, vol. 115(P1), pages 107-119.
    2. Ferrari, Mario L., 2015. "Advanced control approach for hybrid systems based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 145(C), pages 364-373.
    3. Paulina Pianko-Oprych & S. M. Hosseini, 2017. "Dynamic Analysis of Load Operations of Two-Stage SOFC Stacks Power Generation System," Energies, MDPI, vol. 10(12), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    2. Chien-Chang Wu & Tsung-Lin Chen, 2020. "Design and Experiment of a Power Sharing Control Circuit for Parallel Fuel Cell Modules," Energies, MDPI, vol. 13(11), pages 1-23, June.
    3. Chung-Jen Chou & Shyh-Biau Jiang & Tse-Liang Yeh & Li-Duan Tsai & Ku-Yen Kang & Ching-Jung Liu, 2020. "A Portable Direct Methanol Fuel Cell Power Station for Long-Term Internet of Things Applications," Energies, MDPI, vol. 13(14), pages 1-13, July.
    4. Chien-Chang Wu & Tsung-Lin Chen, 2020. "Dynamic Modeling of a Parallel-Connected Solid Oxide Fuel Cell Stack System," Energies, MDPI, vol. 13(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barelli, L. & Bidini, G. & Ottaviano, A., 2017. "Integration of SOFC/GT hybrid systems in Micro-Grids," Energy, Elsevier, vol. 118(C), pages 716-728.
    2. Fardadi, Mahshid & McLarty, Dustin F. & Jabbari, Faryar, 2016. "Investigation of thermal control for different SOFC flow geometries," Applied Energy, Elsevier, vol. 178(C), pages 43-55.
    3. Damo, U.M. & Ferrari, M.L. & Turan, A. & Massardo, A.F., 2019. "Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy," Energy, Elsevier, vol. 168(C), pages 235-246.
    4. Singh, Surinder P. & Ohara, Brandon & Ku, Anthony Y., 2021. "Prospects for cost-competitive integrated gasification fuel cell systems," Applied Energy, Elsevier, vol. 290(C).
    5. Chen, Jinwei & Hu, Zhenchao & Lu, Jinzhi & Zhang, Huisheng & Weng, Shilie, 2022. "A novel control strategy with an anode variable geometry ejector for a SOFC-GT hybrid system," Energy, Elsevier, vol. 261(PA).
    6. Wang, Xusheng & Lv, Xiaojing & Mi, Xicong & Spataru, Catalina & Weng, Yiwu, 2022. "Coordinated control approach for load following operation of SOFC-GT hybrid system," Energy, Elsevier, vol. 248(C).
    7. Promsen, Mungmuang & Komatsu, Yosuke & Sciazko, Anna & Kaneko, Shozo & Shikazono, Naoki, 2023. "Power maximization and load range extension of solid oxide fuel cell operation by water cooling," Energy, Elsevier, vol. 276(C).
    8. Nerat, Marko, 2017. "Modeling and analysis of short-period transient response of a single, planar, anode supported, solid oxide fuel cell during load variations," Energy, Elsevier, vol. 138(C), pages 728-738.
    9. Ma, Rui & Liu, Chen & Breaz, Elena & Briois, Pascal & Gao, Fei, 2018. "Numerical stiffness study of multi-physical solid oxide fuel cell model for real-time simulation applications," Applied Energy, Elsevier, vol. 226(C), pages 570-581.
    10. Zaccaria, V. & Tucker, D. & Traverso, A., 2016. "Transfer function development for SOFC/GT hybrid systems control using cold air bypass," Applied Energy, Elsevier, vol. 165(C), pages 695-706.
    11. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    12. Othman, Ahmed M. & El-Fergany, Attia A., 2021. "Optimal dynamic operation and modeling of parallel connected multi-stacks fuel cells with improved slime mould algorithm," Renewable Energy, Elsevier, vol. 175(C), pages 770-782.
    13. Baudoin, Sylvain & Vechiu, Ionel & Camblong, Haritza & Vinassa, Jean-Michel & Barelli, Linda, 2016. "Sizing and control of a Solid Oxide Fuel Cell/Gas microTurbine hybrid power system using a unique inverter for rural microgrid integration," Applied Energy, Elsevier, vol. 176(C), pages 272-281.
    14. Safari, Amin & Shahsavari, Hossein & Salehi, Javad, 2018. "A mathematical model of SOFC power plant for dynamic simulation of multi-machine power systems," Energy, Elsevier, vol. 149(C), pages 397-413.
    15. Ferrari, M.L. & Pascenti, M. & Massardo, A.F., 2018. "Validated ejector model for hybrid system applications," Energy, Elsevier, vol. 162(C), pages 1106-1114.
    16. Yongqing Wang & Xingchen Li & Zhenning Guo & Ke Wang & Yan Cao, 2021. "Effect of the Reactant Transportation on Performance of a Planar Solid Oxide Fuel Cell," Energies, MDPI, vol. 14(4), pages 1-14, February.
    17. Choi, Wonjae & Kim, Jaehyun & Kim, Yongtae & Kim, Seonyeob & Oh, Sechul & Song, Han Ho, 2018. "Experimental study of homogeneous charge compression ignition engine operation fuelled by emulated solid oxide fuel cell anode off-gas," Applied Energy, Elsevier, vol. 229(C), pages 42-62.
    18. Tomasz A. Prokop & Grzegorz Brus & Shinji Kimijima & Janusz S. Szmyd, 2020. "Thin Solid Film Electrolyte and Its Impact on Electrode Polarization in Solid Oxide Fuel Cells Studied by Three-Dimensional Microstructure-Scale Numerical Simulation," Energies, MDPI, vol. 13(19), pages 1-14, October.
    19. Chien-Chang Wu & Tsung-Lin Chen, 2020. "Dynamic Modeling of a Parallel-Connected Solid Oxide Fuel Cell Stack System," Energies, MDPI, vol. 13(2), pages 1-20, January.
    20. Novoa, Laura & Neal, Russ & Samuelsen, Scott & Brouwer, Jack, 2020. "Fuel cell transmission integrated grid energy resources to support generation-constrained power systems," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3686-:d:271093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.