IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3604-d269329.html
   My bibliography  Save this article

Bridging the Gap between Automated Manufacturing of Fuel Cell Components and Robotic Assembly of Fuel Cell Stacks

Author

Listed:
  • Devin Fowler

    (GT Technologies, Tallahassee, FL 32303, USA)

  • Vladimir Gurau

    (Department of Manufacturing Engineering, Georgia Southern University, Statesboro, GA 30458, USA)

  • Daniel Cox

    (Department of Manufacturing Engineering, Georgia Southern University, Statesboro, GA 30458, USA)

Abstract

Recently demonstrated robotic assembling technologies for fuel cell stacks used fuel cell components manually pre-arranged in stacks (presenters). Identifying the original orientation of fuel cell components and loading them in presenters for a subsequent automated assembly process is a difficult, repetitive work cycle which if done manually, deceives the advantages offered by either the automated fabrication technologies for fuel cell components or by the robotic assembly processes. We present for the first time a robotic technology which enables the integration of automated fabrication processes for fuel cell components with a robotic assembly process of fuel cell stacks into a fully automated fuel cell manufacturing line. This task uses a Yaskawa Motoman SDA5F dual arm robot with integrated machine vision system. The process is used to identify and grasp randomly placed, slightly asymmetric fuel cell components, to reorient them all in the same position and stack them in presenters in preparation for a subsequent robotic assembly process. The process was demonstrated as part of a larger endeavor of bringing to readiness advanced manufacturing technologies for alternative energy systems, and responds the high priority needs identified by the U.S. Department of Energy for fuel cells manufacturing research and development.

Suggested Citation

  • Devin Fowler & Vladimir Gurau & Daniel Cox, 2019. "Bridging the Gap between Automated Manufacturing of Fuel Cell Components and Robotic Assembly of Fuel Cell Stacks," Energies, MDPI, vol. 12(19), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3604-:d:269329
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong-Song Chen & Sheng-Miao Lin & Boe-Shong Hong, 2013. "Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System," Energies, MDPI, vol. 6(12), pages 1-10, December.
    2. Siliang Cheng & Liangfei Xu & Jianqiu Li & Chuan Fang & Junming Hu & Minggao Ouyang, 2016. "Development of a PEM Fuel Cell City Bus with a Hierarchical Control System," Energies, MDPI, vol. 9(6), pages 1-19, May.
    3. Saverio Latorrata & Paola Gallo Stampino & Cinzia Cristiani & Giovanni Dotelli, 2017. "Performance Evaluation and Durability Enhancement of FEP-Based Gas Diffusion Media for PEM Fuel Cells," Energies, MDPI, vol. 10(12), pages 1-17, December.
    4. Kyungho Hwang & Jun-Hyun Kim & Sung-Yul Kim & Hongsik Byun, 2014. "Preparation of Polybenzimidazole-Based Membranes and Their Potential Applications in the Fuel Cell System," Energies, MDPI, vol. 7(3), pages 1-12, March.
    5. Ho-Seong Lee & Choong-Won Cho & Jae-Hyeong Seo & Moo-Yeon Lee, 2016. "Cooling Performance Characteristics of the Stack Thermal Management System for Fuel Cell Electric Vehicles under Actual Driving Conditions," Energies, MDPI, vol. 9(5), pages 1-14, April.
    6. Sung Kuk Jeong & Ju Sung Lee & Sahng Hyuck Woo & Jin Ah Seo & Byoung Ryul Min, 2015. "Characterization of Anion Exchange Membrane Containing Epoxy Ring and C–Cl Bond Quaternized by Various Amine Groups for Application in Fuel Cells," Energies, MDPI, vol. 8(7), pages 1-16, July.
    7. Jingbo Liu & Yuan Yuan & Sajid Bashir, 2013. "Functionalization of Aligned Carbon Nanotubes to Enhance the Performance of Fuel Cell," Energies, MDPI, vol. 6(12), pages 1-11, December.
    8. Hohyoun Jang & Sabuj Chandra Sutradhar & Jiho Yoo & Jaeseong Ha & Jaeseung Pyo & Chaekyun Lee & Taewook Ryu & Whangi Kim, 2016. "Synthesis and Characterization of Sulfonated Poly(Phenylene) Containing a Non-Planar Structure and Dibenzoyl Groups," Energies, MDPI, vol. 9(2), pages 1-11, February.
    9. Hsiaokang Ma & Weiyang Cheng & Fuming Fang & Chinbing Hsu & Chengsheng Lin, 2014. "Compact Design of 10 kW Proton Exchange Membrane Fuel Cell Stack Systems with Microcontroller Units," Energies, MDPI, vol. 7(4), pages 1-17, April.
    10. Nguyen Duy Vinh & Hyung-Man Kim, 2016. "Comparison of Numerical and Experimental Studies for Flow-Field Optimization Based on Under-Rib Convection in Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 9(10), pages 1-17, October.
    11. Nobutaka Endo & Yoshiaki Ogawa & Kohei Ukai & Yuriko Kakihana & Mitsuru Higa, 2016. "DMFC Performance of Polymer Electrolyte Membranes Prepared from a Graft-Copolymer Consisting of a Polysulfone Main Chain and Styrene Sulfonic Acid Side Chains," Energies, MDPI, vol. 9(8), pages 1-15, August.
    12. Cheng Wang & Shubo Wang & Linfa Peng & Junliang Zhang & Zhigang Shao & Jun Huang & Chunwen Sun & Minggao Ouyang & Xiangming He, 2016. "Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications," Energies, MDPI, vol. 9(8), pages 1-39, July.
    13. Benedetto Bozzini & Patrizia Bocchetta & Alessandra Gianoncelli, 2015. "Coelectrodeposition of Ternary Mn-Oxide/Polypyrrole Composites for ORR Electrocatalysts: A Study Based on Micro-X-ray Absorption Spectroscopy and X-ray Fluorescence Mapping," Energies, MDPI, vol. 8(8), pages 1-20, August.
    14. Riccardo Balzarotti & Saverio Latorrata & Paola Gallo Stampino & Cinzia Cristiani & Giovanni Dotelli, 2015. "Development and Characterization of Non-Conventional Micro-Porous Layers for PEM Fuel Cells," Energies, MDPI, vol. 8(7), pages 1-14, July.
    15. Idoia San Martín & Alfredo Ursúa & Pablo Sanchis, 2014. "Modelling of PEM Fuel Cell Performance: Steady-State and Dynamic Experimental Validation," Energies, MDPI, vol. 7(2), pages 1-31, February.
    16. Vladimir Gurau & Terri Armstrong-Koch, 2015. "Further Improvements of an End-Effector for Robotic Assembly of Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 8(9), pages 1-12, September.
    17. Lei Mao & Ben Davies & Lisa Jackson, 2017. "Application of the Sensor Selection Approach in Polymer Electrolyte Membrane Fuel Cell Prognostics and Health Management," Energies, MDPI, vol. 10(10), pages 1-13, September.
    18. Pisit Kiatkittikul & Toshiyuki Nohira & Rika Hagiwara, 2015. "Nonhumidified Fuel Cells Using N -Ethyl- N -methyl-pyrrolidinium Fluorohydrogenate Ionic Liquid-poly(Vinylidene Fluoride-Hexafluoropropylene) Composite Membranes," Energies, MDPI, vol. 8(6), pages 1-13, June.
    19. Andrei Kulikovsky, 2014. "Polarization Curve of a Non-Uniformly Aged PEM Fuel Cell," Energies, MDPI, vol. 7(1), pages 1-14, January.
    20. Christina Roth & Peter Bleith & Christoph A. Schwöbel & Sebastian Kaserer & Jens Eichler, 2014. "Importance of Fuel Cell Tests for Stability Assessment—Suitability of Titanium Diboride as an Alternative Support Material," Energies, MDPI, vol. 7(6), pages 1-11, June.
    21. Zhongmin Wan & Huawei Chang & Shuiming Shu & Yongxiang Wang & Haolin Tang, 2014. "A Review on Cold Start of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 7(5), pages 1-25, May.
    22. Sun-Joon Byun & Zhen Huan Wang & Jun Son & Dong-Kurl Kwak & Young-Chul Kwon, 2018. "Experimental Study on Improvement of Performance by Wave Form Cathode Channels in a PEM Fuel Cell," Energies, MDPI, vol. 11(2), pages 1-14, February.
    23. Mirko Sgambetterra & Sergio Brutti & Valentina Allodi & Gino Mariotto & Stefania Panero & Maria Assunta Navarra, 2016. "Critical Filler Concentration in Sulfated Titania-Added Nafion™ Membranes for Fuel Cell Applications," Energies, MDPI, vol. 9(4), pages 1-15, April.
    24. Robert Alink & Dietmar Gerteisen, 2013. "Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network," Energies, MDPI, vol. 6(9), pages 1-23, September.
    25. Ji Sun Choi & Joon-Yong Sohn & Junhwa Shin, 2015. "A Comparative Study on EB-Radiation Deterioration of Nafion Membrane in Water and Isopropanol Solvents," Energies, MDPI, vol. 8(6), pages 1-11, June.
    26. Alessandro Stassi & Irene Gatto & Ada Saccà & Vincenzo Baglio & Antonino S. Aricò, 2015. "Enhancement of Oxygen Reduction and Mitigation of Ionomer Dry-Out Using Insoluble Heteropoly Acids in Intermediate Temperature Polymer-Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 8(8), pages 1-13, July.
    27. Long-Yi Chang & Hung-Cheng Chen, 2014. "Linearization and Input-Output Decoupling for Nonlinear Control of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 7(2), pages 1-16, January.
    28. Yanzhou Qin & Xuefeng Wang & Rouxian Chen & Xiang Shangguan, 2018. "Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability," Energies, MDPI, vol. 11(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    2. Xueqin Lü, & Wu, Yinbo & Lian, Jie & Zhang, Yangyang, 2021. "Energy management and optimization of PEMFC/battery mobile robot based on hybrid rule strategy and AMPSO," Renewable Energy, Elsevier, vol. 171(C), pages 881-901.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riccardo Balzarotti & Saverio Latorrata & Marco Mariani & Paola Gallo Stampino & Giovanni Dotelli, 2020. "Optimization of Perfluoropolyether-Based Gas Diffusion Media Preparation for PEM Fuel Cells," Energies, MDPI, vol. 13(7), pages 1-14, April.
    2. Jin Hyun Kim & Woo Tae Kim, 2018. "Numerical Investigation of Gas-Liquid Two-Phase Flow inside PEMFC Gas Channels with Rectangular and Trapezoidal Cross Sections," Energies, MDPI, vol. 11(6), pages 1-18, May.
    3. Jin Hyun Kim & Gwang Goo Lee & Woo Tae Kim, 2017. "Comparison of Liquid Water Dynamics in Bent Gas Channels of a Polymer Electrolyte Membrane Fuel Cell with Different Channel Cross Sections in a Channel Flooding Situation," Energies, MDPI, vol. 10(6), pages 1-18, May.
    4. Mirko Sgambetterra & Sergio Brutti & Valentina Allodi & Gino Mariotto & Stefania Panero & Maria Assunta Navarra, 2016. "Critical Filler Concentration in Sulfated Titania-Added Nafion™ Membranes for Fuel Cell Applications," Energies, MDPI, vol. 9(4), pages 1-15, April.
    5. Xuqu Hu & Xingyi Wang & Juanzhong Chen & Qinwen Yang & Dapeng Jin & Xiang Qiu, 2017. "Numerical Investigations of the Combined Effects of Flow Rate and Methanol Concentration on DMFC Performance," Energies, MDPI, vol. 10(8), pages 1-15, July.
    6. Marco Mariani & Andrea Basso Peressut & Saverio Latorrata & Riccardo Balzarotti & Maurizio Sansotera & Giovanni Dotelli, 2021. "The Role of Fluorinated Polymers in the Water Management of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 14(24), pages 1-17, December.
    7. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    8. Alessandro Arrigoni & Valeria Arosio & Andrea Basso Peressut & Saverio Latorrata & Giovanni Dotelli, 2022. "Greenhouse Gas Implications of Extending the Service Life of PEM Fuel Cells for Automotive Applications: A Life Cycle Assessment," Clean Technol., MDPI, vol. 4(1), pages 1-17, February.
    9. Anggito P. Tetuko & Bahman Shabani & John Andrews, 2018. "Passive Fuel Cell Heat Recovery Using Heat Pipes to Enhance Metal Hydride Canisters Hydrogen Discharge Rate: An Experimental Simulation," Energies, MDPI, vol. 11(4), pages 1-19, April.
    10. Lee, F.C. & Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L & Lyth, S.M. & Pourkashanian, M., 2022. "Alternative architectures and materials for PEMFC gas diffusion layers: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    11. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    12. Aldakheel, F. & Ismail, M.S. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Pourkashanian, M. & Cumming, D. & Smith, R., 2020. "Gas permeability, wettability and morphology of gas diffusion layers before and after performing a realistic ex-situ compression test," Renewable Energy, Elsevier, vol. 151(C), pages 1082-1091.
    13. Alisa Kozhushner & Qing Li & Lior Elbaz, 2023. "Heteroatom-Doped Carbon Supports with Enhanced Corrosion Resistance in Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 16(9), pages 1-15, April.
    14. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    15. Adam Polak, 2020. "Simulation of Fuzzy Control of Oxygen Flow in PEM Fuel Cells," Energies, MDPI, vol. 13(9), pages 1-26, May.
    16. Pengyu Lu & Qing Gao & Liang Lv & Xiaoye Xue & Yan Wang, 2019. "Numerical Calculation Method of Model Predictive Control for Integrated Vehicle Thermal Management Based on Underhood Coupling Thermal Transmission," Energies, MDPI, vol. 12(2), pages 1-27, January.
    17. Mohamed Derbeli & Oscar Barambones & Jose Antonio Ramos-Hernanz & Lassaad Sbita, 2019. "Real-Time Implementation of a Super Twisting Algorithm for PEM Fuel Cell Power System," Energies, MDPI, vol. 12(9), pages 1-20, April.
    18. Andrzej Wilk & Daniel Węcel, 2020. "Measurements Based Analysis of the Proton Exchange Membrane Fuel Cell Operation in Transient State and Power of Own Needs," Energies, MDPI, vol. 13(2), pages 1-19, January.
    19. Wong, A.K.C. & Ge, N. & Shrestha, P. & Liu, H. & Fahy, K. & Bazylak, A., 2019. "Polytetrafluoroethylene content in standalone microporous layers: Tradeoff between membrane hydration and mass transport losses in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 240(C), pages 549-560.
    20. Diogo Loureiro Martinho & Samuel Simon Araya & Simon Lennart Sahlin & Vincenzo Liso & Na Li & Thomas Leopold Berg, 2022. "Modeling a Hybrid Reformed Methanol Fuel Cell–Battery System for Telecom Backup Applications," Energies, MDPI, vol. 15(9), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3604-:d:269329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.